Conditional Gaussian graphical model for estimating personalized disease symptom networks.

Stat Med

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.

Published: February 2022

The co-occurrence of symptoms may result from the direct interactions between these symptoms and the symptoms can be treated as a system. In addition, subject-specific risk factors (eg, genetic variants, age) can also exert external influence on the system. In this work, we develop a covariate-dependent conditional Gaussian graphical model to obtain personalized symptom networks. The strengths of network connections are modeled as a function of covariates to capture the heterogeneity among individuals and subgroups of individuals. We assess the performance of our proposed method by simulation studies and an application to a large natural history study of Huntington's disease to investigate the networks of symptoms in multiple clinical domains (motor, cognitive, psychiatric) and identify important brain imaging biomarkers that are associated with the connections. We show that the symptoms in the same clinical domain interact more often with each other than cross domains and the psychiatric subnetwork is the densest network. We validate the findings using the subjects' symptom measurements at follow-up visits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792223PMC
http://dx.doi.org/10.1002/sim.9274DOI Listing

Publication Analysis

Top Keywords

conditional gaussian
8
gaussian graphical
8
graphical model
8
symptom networks
8
symptoms
5
model estimating
4
estimating personalized
4
personalized disease
4
disease symptom
4
networks co-occurrence
4

Similar Publications

A Martingale-Free Introduction to Conditional Gaussian Nonlinear Systems.

Entropy (Basel)

December 2024

Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA.

The conditional Gaussian nonlinear system (CGNS) is a broad class of nonlinear stochastic dynamical systems. Given the trajectories for a subset of state variables, the remaining follow a Gaussian distribution. Despite the conditionally linear structure, the CGNS exhibits strong nonlinearity, thus capturing many non-Gaussian characteristics observed in nature through its joint and marginal distributions.

View Article and Find Full Text PDF

Graphical models have long been studied in statistics as a tool for inferring conditional independence relationships among a large set of random variables. The most existing works in graphical modeling focus on the cases that the data are Gaussian or mixed and the variables are linearly dependent. In this paper, we propose a double regression method for learning graphical models under the high-dimensional nonlinear and non-Gaussian setting, and prove that the proposed method is consistent under mild conditions.

View Article and Find Full Text PDF

BTSegDiff: Brain tumor segmentation based on multimodal MRI Dynamically guided diffusion probability model.

Comput Biol Med

January 2025

School of Information Science and Engineering, Yunnan University, 650500, Kunming, China. Electronic address:

In the treatment of brain tumors, accurate diagnosis and treatment heavily rely on reliable brain tumor segmentation, where multimodal Magnetic Resonance Imaging (MRI) plays a pivotal role by providing valuable complementary information. This integration significantly enhances the performance of brain tumor segmentation. However, due to the uneven grayscale distribution, irregular shapes, and significant size variations in brain tumor images, this task remains highly challenging.

View Article and Find Full Text PDF

Graphical models are powerful tools to investigate complex dependency structures in high-throughput datasets. However, most existing graphical models make one of two canonical assumptions: (i) a homogeneous graph with a common network for all subjects or (ii) an assumption of normality, especially in the context of Gaussian graphical models. Both assumptions are restrictive and can fail to hold in certain applications such as proteomic networks in cancer.

View Article and Find Full Text PDF

Background: Geographical factors can affect infectious disease transmission, including SARS-CoV-2, a virus that is spread through respiratory secretions. Prioritization of surveillance and response activities during a pandemic can be informed by a pathogen's geographical transmission patterns. We assessed the relationship between geographical factors and SARS-CoV-2 prevalence in Zambia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!