Comparison of rhodamine 6G, rhodamine B and rhodamine 101 spirolactam based fluorescent probes: A case of pH detection.

Spectrochim Acta A Mol Biomol Spectrosc

School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China. Electronic address:

Published: March 2022

Ring-opening reaction of rhodamine spirolactam has been widely applied to construct fluorescent probes. The fluorescence properties of the probe were finely tuned for specific purpose through changing the rhodamine fluorophore. However, the influence on response range and kinetic parameters of the probe during the change has been seldom discussed. Herein, we took pH detection as an example and constructed spirolactam based probes (RLH A-C) with Rhodamine 6G, Rhodamine B and Rhodamine 101. The pK values and observed rate constant k of RLH A-C were determined and found to negatively correlated with the calculated Gibbs free energy differences ΔG and ΔG respectively. The potential applications of RLH A-C in imaging acidic microenvironment were also investigated in cells. We expect the comparison of rhodamine fluorophores will facilitate the quantitative optimization of rhodamine spirolactam based fluorescent probes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120662DOI Listing

Publication Analysis

Top Keywords

rhodamine rhodamine
16
spirolactam based
12
fluorescent probes
12
rlh a-c
12
rhodamine
9
comparison rhodamine
8
rhodamine 101
8
based fluorescent
8
rhodamine spirolactam
8
spirolactam
4

Similar Publications

Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.

View Article and Find Full Text PDF

Motion-less depth-selective optogenetic probe using tapered fiber and an electrically tuneable liquid crystal steering element.

Biomed Opt Express

January 2025

Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.

A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.

View Article and Find Full Text PDF

A Novel Rhodamine-Based Fluorescent Sensor for Detection of Cu.

J Fluoresc

January 2025

School of Chemistry & Environmental Engineering, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China.

In this work, a new fluorescent sensor for detecting Cu was developed based on the Rhodamine derivative. It displayed strong fluorescence enhancement upon the addition of Cu, and other common metal ions do not significantly affect the optical properties of the sensor. This optical signal change caused solely by Cu is due to the opening of the lactone amide spiro ring structure, resulting in fluorescence emission.

View Article and Find Full Text PDF

Aiming to enable online freshness-monitoring of meat within modified-atmosphere package, we developed a ratiometric array that was fluorescently responsive to volatile organic compounds-ammonia (NH) released by protein decaying. The array was consisted of two 3 mm × 6 mm rectangles precisely and uniformly printed with fluorescein isothiocyanate (FITC) as indicator and rhodamine B (RhB) as internal reference on the filter-paper, respectively. The fluorescence intensity of the array area was calibrated according to Green/Red ratio of the digitalized pixels extracted from images facilitated by a smartphone.

View Article and Find Full Text PDF

Fabrication of a novel reusable nanozyme by immobilizing Co-doped carbon dots on nanocellulose aerogels for efficient dyes degradation.

Int J Biol Macromol

January 2025

Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:

Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!