Computer-aided profiling of a unique broad-specific antibody and its application to an ultrasensitive fluoroimmunoassay for five N-methyl carbamate pesticides.

J Hazard Mater

Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: March 2022

Pollution of N-methyl carbamate (NMC) pesticides is threatening the non-target organisms' survival. Thus, broad-specific antibodies and class-selective immunoassays are demanding for multiple NMCs determination. In this study, we employed a molecular docking-based virtual screening strategy to fast profile antibody spectrum, based on a designed chemical pool containing 17 compounds. A monoclonal antibody (mAb)-6G against carbofuran was used as the objective. The recombinant full-length IgG was successfully expressed to validate the antibody sequences for homology modeling. After docking, we manually categorized the antibody-chemical binding strength into three groups. Non-competitive surface plasmon resonance (SPR) demonstrated the mAb-6G affinitive binding toward five NMCs (carbofuran, isoprocarb, propoxur, carbaryl and carbosulfan), which were classified into strong and moderate binding categories. Antibody binding properties were confirmed again by ic-ELISA and lateral flow immunochromatographic strip. Subsequently, an ultrasensitive indirect competitive fluoromicrosphere-based immunoassay (ic-FMIA) was established with the IC (half-maximal inhibitory concentration) values of 0.08-3.37 ng/mL. This portable assay presented a 30-230-fold improved sensitivity than traditional ic-ELISA and was applied in European surface water analysis. Overall, our work provides an efficient platform integrating in-silico and experimental methodologies to accelerate the characterization of hapten-specific antibody binding properties and the development of high-sensitive immunoassays for multi-pollutants monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127845DOI Listing

Publication Analysis

Top Keywords

n-methyl carbamate
8
antibody binding
8
binding properties
8
antibody
6
binding
5
computer-aided profiling
4
profiling unique
4
unique broad-specific
4
broad-specific antibody
4
antibody application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!