As an emerging electrolyzed water (EW) technology, tap water-based neutral electrolyzed water (TNEW) is an attractive alternative to other types of conventional EW for sterilization of food contact surfaces. In this study, we sought to identify strategies for improving TNEW inactivation efficiencies of major foodborne pathogenic bacteria. We investigated the synergistic antimicrobial effect of TNEW and ultraviolet-A light (UVA) combination treatment against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel. The data confirmed that simultaneous TNEW and UVA treatment for 60 min reduced E. coli O157:H7, S. Typhimurium, and L. monocytogenes population by 2.15, 1.55, and 2.65 log CFU/cm, respectively. The synergistic cell count reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes in the combination treatment group were 1.17, 0.59, and 1.62 log units, respectively. Additionally, the mechanisms of the synergistic bactericidal effects of TNEW and UVA were identified through several approaches. Mechanistic investigations suggested that the synergistic effect was associated with intracellular reactive oxygen species generation, bacterial cell membrane damage, and inactivation of dehydrogenase. These findings demonstrate that treatment with TNEW and UVA light can enhance the microbiological safety of food contact surfaces during food processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2021.110773 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Reducing iridium (Ir) loading while maintaining efficiency and stability is crucial for the acidic oxygen evolution reaction (OER). In this study, we develop a synthetic method of sequential electrochemical deposition and high-temperature thermal shock to produce an IrO/Ir-WO electrocatalyst with ∼1.75 nm IrO nanoparticles anchoring on Ir-doped WO nanosheets.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China.
The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, PR China. Electronic address:
Exploring suitable dual active site and metal-substrate interface effect is essential for designing efficient and robust electrocatalysts across a wide pH range for the hydrogen evolution reaction (HER). Herein, alloyed platinum-ruthenium clusters supported on nanosheet-assembled molybdenum carbide microflowers (PtRu/MoC) are reported as efficient pH-universal electrocatalysts for HER. Due to dual active site and metal-substrate interface effect, the optimized PtRu/MoC electrocatalyst exhibits extremely low overpotentials (η) of 9, 19, and 33 mV to deliver 10 mA cm in 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!