Control of mosquito vectors of pathogens remains heavily dependent on the application of conventional insecticides. Pyriproxyfen (PPF) is a novel insecticide that has been proposed for use in autodissemination techniques to control mosquito vectors. The use of PPF can inhibit adult emergence but does not inhibit larval development. This feature is favorable for controlling Aedes aegypti because PPF has the potential to work in combination with natural sources of mortality (competition, predation) during the immature stages, and other control methods, including biocontrol agents that further suppress recruitment of adult mosquitoes. However, the PPF effects on life-history traits of Ae. aegypti in comparison to predatory mosquito Toxorhynchites rutilus, a source of mortality, are not fully understood. Here, we show that larval exposure to PPF concentrations that inhibit 50-90% of adult emergence in Ae. aegypti had a negligible effect on adult emergence and lifespan of Tx. rutilus. Weights of adult Ae. aegypti and Tx. rutilus were not influenced by PPF. These findings suggest that the use of PPF to control mosquito vectors may have low effects on mosquito biocontrol agents. Our results extend and confirm earlier data showing that PPF has potential to implement with Tx. rutilus to suppress Ae. aegypti and provide an additional advantage of PPF use in autodissemination control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jme/tjab193 | DOI Listing |
Germs
September 2024
MD, MPH, PhD, Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Kaliurang Street KM 14.5 Yogyakarta 55584, Indonesia.
Introduction: Dengue infection poses a serious threat to global public health, including Indonesia. The rapid spread and significant economic impact are crucial concerns for control efforts. Investigating risk factors of dengue virus infection is necessary to formulate effective strategies, particularly at the household level.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
The number of reported malaria cases transmitted by Anopheles mosquitoes in the Republic of Korea (ROK) increased from 420 in 2022 to 746 in 2023, a 77.6% increase. Eight Anopheles species are currently reported in the ROK, including six species belonging to the Anopheles Hyrcanus Group and one species each belonging to the Barbirostris Group and Lindesayi Group.
View Article and Find Full Text PDFBull Entomol Res
January 2025
Environmental Sciences Graduate Program, Community University of the Chapecó Region (Unochapecó), Chapecó, SC, Brazil.
Mosquitoes, particularly , pose significant public health risks by transmitting diseases like dengue, zika and chikungunya. var. (BTI) is a crucial larvicide targeting mosquitoes while sparing other organisms and the environment.
View Article and Find Full Text PDFMalar J
January 2025
Malaria Elimination Initiative, Institute for Global Health Sciences, University of California San Francisco, San Francisco, USA.
Background: Malaria incidence in the Greater Mekong Subregion has been on the decline, and most remaining malaria risk in the region is concentrated among hard-to-reach populations, especially those with exposure to forested areas. New vector control tools focused on outdoor protection in forest settings are needed for these populations.
Methods: The delivery of a 'forest pack' containing a volatile pyrethroid spatial repellent (VPSR), a topical repellent, and pyrethroid treatment of clothing was evaluated in an operational study in Cambodia.
Viruses
November 2024
Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy.
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!