AI Article Synopsis

  • Metformin is being investigated as a potential first drug to target aging and improve healthspan in healthy individuals, with ongoing debates about its effectiveness in those without age-related diseases.
  • Previous research indicates that metformin's impact on insulin sensitivity and muscle adaptations varies based on pre-existing metabolic health; insulin-sensitive individuals show no detrimental effects, while insulin-resistant individuals experience positive changes.
  • This clinical trial aims to analyze how metabolic health and muscle mitochondrial function influence the effects of metformin, using a double-blind method with participants taking either metformin or placebo, alongside assessments of insulin sensitivity and muscle function before and after treatment.

Article Abstract

The antidiabetic medication metformin has been proposed to be the first drug tested to target aging and extend healthspan in humans. While there is extensive epidemiological support for the health benefits of metformin in patient populations, it is not clear if these protective effects apply to those free of age-related disease. Our previous data in older adults without diabetes suggest a dichotomous change in insulin sensitivity and skeletal muscle mitochondrial adaptations after metformin treatment when co-prescribed with exercise. Those who entered the study as insulin-sensitive had no change to detrimental effects while those who were insulin-resistant had positive changes. The objective of this clinical trial is to determine if (a) antecedent metabolic health and (b) skeletal muscle mitochondrial remodeling and function mediate the positive or detrimental effects of metformin monotherapy, independent of exercise, on the metabolism and biology of aging. In a randomized, double-blind clinical trial, adults free of chronic disease (n = 148, 40-75 years old) are stratified as either insulin-sensitive or resistant based on homeostatic model assessment of insulin resistance (≤2.2 or ≥2.5) and take 1 500 mg/day of metformin or placebo for 12 weeks. Hyperinsulinemic-euglycemic clamps and skeletal muscle biopsies are performed before and after 12 weeks to assess primary outcomes of peripheral insulin sensitivity and mitochondrial remodeling and function. Findings from this trial will identify clinical characteristics and cellular mechanisms involved in modulating the effectiveness of metformin treatment to target aging that could inform larger Phase 3 clinical trials aimed at testing aging as a treatment indication for metformin. Clinical Trials Registration Number: NCT04264897.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799202PMC
http://dx.doi.org/10.1093/gerona/glab358DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
antecedent metabolic
8
metabolic health
8
metformin
8
target aging
8
insulin sensitivity
8
muscle mitochondrial
8
metformin treatment
8
detrimental effects
8
clinical trial
8

Similar Publications

The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids (FFAs), often observed in obesity, leads to impaired insulin action, and promotes the development of insulin resistance and Type 2 diabetes mellitus (T2DM). JNK, IKK-NF-κB, and STAT3 are known to be involved in skeletal muscle insulin resistance.

View Article and Find Full Text PDF

Liver-Secreted Extracellular Vesicles Promote Cirrhosis-Associated Skeletal Muscle Injury Through mtDNA-cGAS/STING Axis.

Adv Sci (Weinh)

January 2025

Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.

Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway.

View Article and Find Full Text PDF

In this study we used an ex model to assess the effect of feeding older (50 - 70 y) adults a casein protein hydrolysate (CPH) compared with non-bioactive non-essential amino acid (NEAA) supplement on muscle protein synthesis (MPS) and markers of muscle protein breakdown (MPB). As a secondary objective, to assess any attenuation with aging, we compared the anabolic response to CPH-fed serum from older and young adults. Serum from seven healthy older and seven young men following overnight fast and 60 min postprandial ingestion of CPH or NEAA (0.

View Article and Find Full Text PDF

Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!