Background: Late onset Pompe disease (LOPD) is rare and generally manifests predominantly as progressive limb girdle muscle weakness. It is linked to the pathogenic mutations in GAA gene, which leads to glycogen accumulation in various tissues.
Materials And Methods: We describe the unusual clinical, biochemical, histopathological and genetic characteristics of 5 cases of LOPD.
Results: The first case had progressive anterior horn cell like disease (AHCD) that evolved later to classical limb girdle syndrome and respiratory failure, the second patient had rigid spine syndrome with gastrointestinal manifestations, the third had limb girdle weakness superimposed with episodic prolonged worsening and respiratory failure, the fourth had large fibre sensory neuropathy without primary muscle involvement and the fifth presented with classical limb girdle muscle weakness. Two homozygous missense mutations c.1461C > A (p.Phe487Leu) and c.1082C > T (p.Pro361Leu) in the GAA gene were identified in case 1 and 2 respectively. Case 3 was compound heterozygous with inframe c.1935_1940del (p.Val646_Cys647del) and an intronic splice effecting variant c.-32-13T > G. Compound heterozygous missense variants c.971C > T (p.Pro324Leu) and c.794G > A (p.Ser265Asn) were identified in case 4. Case 5 had a frameshift insertion c.1396dupG (p.Val466GlyfsTer40) and a synonymous splice affecting variant c.546G > T(p.Thr182=).
Conclusion: We are describing for the first time from India on LOPD with unusual phenotypes identified. A high degree of clinical suspicion and diagnosing rare phenotypes of Pompe disease is imperative to consider early initiation of Enzyme Replacement Therapy (ERT).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JND-210728 | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Human Genetics, Emory University, Atlanta, GA, USA.
Background: Late-onset Pompe disease (LOPD) is an autosomal recessive lysosomal storage disorder that results in severe progressive proximal muscle weakness. Over time, reductions in muscle strength result in respiratory failure and a loss of ambulation. Delayed diagnosis of LOPD deprives patients of treatments that can enhance quality of life and potentially slow disease progression.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.
Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).
View Article and Find Full Text PDFCureus
December 2024
Department of Community Medicine, GSVM Medical College, Kanpur, IND.
Background: Cerebral palsy (CP), traumatic spinal cord injury (SCI), and muscular dystrophy (MD), among the various other neurological disorders, are major global health problems because they are chronic disorders with no curative treatments at present. Current interventions aim to relieve symptoms alone and therefore emphasize the necessity for new approaches.
Objective: This study aims to assess the safety and efficacy of autologous bone marrow-derived mononuclear cell (BM-MNC) therapy in patients with CP, traumatic SCI, and MD.
Muscle Nerve
January 2025
Faculty of Health Sciences, Kobe Tokiwa University, Kobe, Japan.
Introduction: A 20 kDa fragment at the N-terminus of titin is highly excreted in the urine of patients with Duchenne muscular dystrophy (DMD), making urine titin a prominent biomarker for muscle breakdown. This N-terminal fragment is presumed to be a product of degradation by a protein-degrading enzyme, calpain 3; however, whether calpain 3 is required remains unclear. We aimed to determine whether urine titin elevation occurs in the absence of calpain 3.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!