Bioretention systems are environmentally friendly measures to control the amount of water and pollutants in urban stormwater runoff, and their treatment performance for inorganic N strongly depends on various microbial processes. However, microbial responses to variations of N mass reduction in bioretention systems are complex and poorly understood, which is not conducive to management designs. In the present study, a series of bioretention columns were established to monitor their fate performance for inorganic N (NHand NO) by using different configurations and by dosing with simulated stormwater events. The results showed that NH was efficiently oxidized to NO, mainly by ammonia- and nitrite-oxidizing bacteria in the oxic media, regardless of the configurations of the bioretention systems or stormwater conditions. In contrast, NO removal pathways varied greatly in different columns. The presence of vegetation efficiently improved NOmass reduction through root assimilation and enhancement of microbial NO reduction in the rhizosphere. The construction of an organic-rich saturation zone can make the redox potential too low for heterotrophic denitrification to occur, so as to ensure high NO mass reduction mainly via stimulating chemolithotrophic NO reduction coupled with oxidation of reductive sulfur compounds derived from the bio-reduction of sulfate. In contrast, in the organic-poor saturation zone, multiple oligotrophic NO reduction pathways may be responsible for the high NO mass reduction. These findings highlight the necessity of considering the variation of N bio-transformation pathways for inorganic N removal in the configuration of bioretention systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117895DOI Listing

Publication Analysis

Top Keywords

bioretention systems
16
mass reduction
12
bioretention columns
8
performance inorganic
8
saturation zone
8
high mass
8
reduction
7
bioretention
6
unconventional microbial
4
microbial mechanisms
4

Similar Publications

Bioretention systems offer advantages in controlling non-point source pollution from runoff rainwater. However, the systems frequently encounter challenges, including insufficient stability of nitrogen and phosphorus removal. Limited research has been performed on bioretention systems which integrate actual data from non-point source pollution cases for the quantitative and qualitative refinement of initial and non-initial rainwater.

View Article and Find Full Text PDF

The dataset represents micro computed tomography (µCT) images of undisturbed samples of constructed Technosol, obtained by sampling from the top layer of the biofilter in two bioretention cells. A bioretention cell is a stormwater management system designed to collect and temporarily retain stormwater runoff and treat it by filtering it through a soil media called a biofilter. Soil samples were collected at 7, 12, 18, 23, and 31 months after the establishment of bioretention cells.

View Article and Find Full Text PDF

Influence of rubber particle inputs on nitrogen removal efficiency of bioretention systems.

Water Sci Technol

November 2024

Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an 710055, China.

Article Synopsis
  • Bioretention systems are effective at capturing rubber particles and microplastics from stormwater runoff, but the long-term impact on pollutant removal is still uncertain.
  • A study showed that adding ethylene-propylene-diene-monomer (EPDM) particles improved nitrogen removal, with reductions in nitrogen levels in effluent during both short and long-duration rainfalls.
  • The presence of EPDM particles also enhanced the growth of denitrifying bacteria in the bioretention system, which boosted its capacity to remove nitrates from the water.
View Article and Find Full Text PDF

Replacement depth and lifespan prediction of enhanced bioretention media under TSS impact conditions.

Environ Technol

November 2024

State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China.

Article Synopsis
  • The enhanced bioretention system offers a new solution for managing stormwater issues caused by urbanization, focusing on the impact of different media over time.
  • The study analyzed various materials like river sand, loess, compost, and modified fillers to understand their effects on clogging, hydraulic conductivity, and porosity in a layered system.
  • Findings suggest that the infiltration rate decreases with accumulated total suspended solids (TSS), leading to a predicted system clogging time of 5.5 to 7.1 years and a necessary media replacement depth of about 35 cm, which aids in predicting system longevity and maintenance needs.
View Article and Find Full Text PDF

As high-standard farmland rapidly expands, agricultural non-point source pollution has emerged as a main environmental issue in China. To tackle nitrogen pollution, green infrastructure (GI), especially bioretention cells (BRCs), has been extensively adopted. However, the long-term effectiveness of these systems may be hindered by clogging and nitrogen leaching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!