We examined the risk of withering syndrome (WS) rickettsia-like organism (WS-RLO) infection in sentinel red abalone (Haliotis rufescens) deployed in modules at two Southern California field sites, one adjacent to an abalone farm and one adjacent to wild abalones. WS-RLO DNA was detected in seawater near modules at the wild abalone site but not near the farm (WS-RLO DNA was detected in the farm effluent). More WS-RLO DNA was detected in tissue from abalone near the farm relative to those near wild abalones (p < 0.05). However, infection prevalence and intensity based on histology were low and similar between sites (p > 0.05) and were independent of WS-RLO DNA loads in abalone tissue and seawater. More stippled (ST)-RLO than WS-RLO were observed with more ST-RLO infections near wild abalone than near the abalone farm (p < 0.05). We demonstrate the utility of caged sentinel abalone to better understand pathogen transmission patterns in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2021.105540 | DOI Listing |
Mar Environ Res
January 2022
School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195, USA.
We examined the risk of withering syndrome (WS) rickettsia-like organism (WS-RLO) infection in sentinel red abalone (Haliotis rufescens) deployed in modules at two Southern California field sites, one adjacent to an abalone farm and one adjacent to wild abalones. WS-RLO DNA was detected in seawater near modules at the wild abalone site but not near the farm (WS-RLO DNA was detected in the farm effluent). More WS-RLO DNA was detected in tissue from abalone near the farm relative to those near wild abalones (p < 0.
View Article and Find Full Text PDFJ Aquat Anim Health
June 2020
School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, Washington, 98195, USA.
Withering syndrome (WS) is a chronic bacterial disease that affects numerous northeastern Pacific abalone Haliotis spp. The causative agent of WS is an obligate intracellular Rickettsiales-like bacterium (WS-RLO) that remains unculturable, thereby limiting our understanding of WS disease dynamics. The objectives of our study were to (1) determine the temporal stability of WS-RLO DNA outside of its abalone host in 14°C and 18°C seawater, (2) develop a standardized protocol for exposing abalones to known concentrations of WS-RLO DNA, and (3) calculate the dose of WS-RLO DNA required to generate 50% infection prevalence (ID50) in the highly cultured red abalone Haliotis rufescens.
View Article and Find Full Text PDFDis Aquat Organ
April 2014
School of Aquatic and Fishery Sciences, and US Geological Survey, Washington Cooperative Fish and Wildlife Research Unit, University of Washington, Box 355020, Seattle, Washington 98195, USA.
Withering syndrome (WS) is a fatal disease of abalone caused by a Rickettsiales-like organism (WS-RLO). The causative agent, 'Candidatus Xenohaliotis californiensis', occurs along the eastern Pacific margin of North America in California, USA, and Baja California, Mexico. However, as infected abalones have been transported to Chile, China, Taiwan, Iceland, Ireland, Israel, Spain, Thailand and Japan, the geographical range of the etiological agent is suspected to be broad, especially where California red abalones Haliotis rufescens are cultured or in areas where native species have been exposed to this species.
View Article and Find Full Text PDFDis Aquat Organ
April 2014
School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, Washington 98195, USA.
Withering syndrome (WS), a serious disease affecting abalone Haliotis spp., is caused by infection from an intracellular Rickettsia-like organism (WS-RLO). Diagnosis of the disease currently relies on a combination of histological examination and molecular methods (in situ hybridization, standard PCR, and sequence analysis).
View Article and Find Full Text PDFFront Microbiol
December 2013
UCSB Marine Science Institute Santa Barbara, CA, USA ; Bren School of Environmental Science and Management, University of California Santa Barbara, CA, USA.
An intracellular bacterium Candidatus Xenohaliotis californiensis, also called Withering-Syndrome Rickettsia-Like Organism (WS-RLO), is the cause of mass mortalities that are the chief reason for endangerment of black abalone (Haliotis cracherodii). Using a real-time PCR assay, we found that a shore-based abalone farm (AF) in Santa Barbara, CA, USA discharged WS-RLO DNA into the ocean. Several other shore-based AFs discharge effluent into critical habitat for black abalone in California and this might affect the recovery of wild black abalone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!