A novel strain of Gram-positive bacteria Paenibacillus profundus YoMME was recognized by sequencing of 16S rRNA gene and after that tested for exoelectrogenicity for the first time. It was found that at an applied potential of -0.195 V (vs. SHE) the bacteria are capable of generating electricity and forming electroactive biofilms for 3-4 days. A tendency for the decrease in double-layer capacitance and the increase in the charge transfer resistance during the maturation of the biofilm was established. The formed bioanodes were used as a part of a membrane-electrode assembly (MEA) together with a selected cathode (E-Tek) and a separator (Zirfon). The applicability of MEA with the bioanode was tested by operating a newly designed bioelectrochemical system in a microbial fuel cell (MFC) or microbial electrolysis cell (MEC) mode. A current density of 200 mA m was generated by the MFC after the improvement of the cathodic reaction through facilitated air access. The Coulombic efficiency in different MFC runs ranged from 5.2 to 7.4%. It was also determined that 0.65 V applied cell voltage is appropriate for the operation of the cell in the electrolysis mode, during which a current density of 2-3 Am was reached. This, along with the evolved gas on the cathode, shows that as an anodic biocatalyst P. profundus YoMME assists the electrolysis processes at a significantly lower voltage than the theoretical one (1.23 V) for water decomposition. The hydrogen production rate varied between 0.5 and 0.7 m/md and the cathodic hydrogen recovery ranged from 49.5 to 61.5 %. The estimated energy efficiency based on the electricity input exceeds 100 %, which indicates that additional energy is being gained from the biotic oxidation of the available organics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2021.108011DOI Listing

Publication Analysis

Top Keywords

gram-positive bacteria
8
membrane-electrode assembly
8
profundus yomme
8
mode current
8
current density
8
bacteria covered
4
covered bioanode
4
bioanode membrane-electrode
4
assembly bioelectrochemical
4
bioelectrochemical systems
4

Similar Publications

Effects of immersion bathing in Lactobacillus plantarum CLY-05 on the growth performance, non-specific immune enzyme activities and gut microbiota of Apostichopus japonicus.

PLoS One

December 2024

Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China.

In order to study the optimal use of Lactobacillus plantarum in sea cucumber (Apostichopus japonicus), 49 days feeding trial was conducted to determine the influence of immersion bathing in different concentrations of Lactobacillus plantarum CLY-05 on body weight gain rate and non-specific immune activities. The potential effect of CLY-05 on gut microbiota was also analyzed during the immersion bathing at the optimum concentration. The results showed that the body weight growth rate of all bathing groups was higher than that of control.

View Article and Find Full Text PDF

Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application.

Mol Pharm

December 2024

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.

View Article and Find Full Text PDF

Bacterial skin infections, particularly pyoderma and otitis externa, are widespread in dogs, primarily caused by and species. This study evaluates the prevalence and types of bacterial pathogens in affected dogs in South Korea using a meta-analytical approach. Following the PRISMA guidelines, five electronic databases were searched for relevant studies published between 1990 and 2024.

View Article and Find Full Text PDF

Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.

View Article and Find Full Text PDF

Background: Bloodstream infections (BSIs) pose a great challenge to treating patients, especially those with underlying diseases, such as immunodeficiency diseases. Early diagnosis helps to direct precise empirical antibiotic administration and proper clinical management. This study carried out a serum metabolomic analysis using blood specimens sampled from patients with a suspected infection whose routine culture results were later demonstrated to be positive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!