Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For investigating the microbial community, interspecific interaction and nitrogen metabolism during the transform process from heterotrophic to synergistic and autotrophic denitrification, a filter was built, and carbon source and sulfur concentration were changed to release the transformation process. The results demonstrated that the transformation process was feasible to keep nitrate nitrogen (NO-N) discharge concentration lower than 15 mg L, however, nitrite nitrogen (NO-N) accumulation and its rate reached 7.85% at initial stages. The dominant denitrification gunes were Methylophilaceae, Thiovulaceae and Hydrogenophilaceae for three processes, respectively, and the microbial interspecific interaction of heterotrophic denitrification was more complex than others. NO-N accumulation was confirmed by the low abundance of EC1.7.7.1 and EC1.7.2.1, and the dominance degree of dark oxidation of sulfur compounds and dark sulfide oxidation improved in synthesis and autotrophic denitrifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2021.126471 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!