Dependence of glucose transport on autophagy and GAPDH activity.

Brain Res

Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 800 Rose Street, MS-301 Willard Medical Research Building, Lexington, KY 40536, United States.

Published: February 2022

Glucose uptake in the brain is critically important to brain health. Using two widely used cell line model systems, we have found that siramesine, a lysosomotropic agent and ligand for the sigma-2 receptor, inhibits glucose uptake and decreases pools of the GLUT1 glucose transporter at the plasma membrane. Siramesine induces autophagy but also disrupts degradation of autophagy substrates, providing a potential mechanism for its action on glucose uptake. In other cell systems, many of the effects of siramesine can be suppressed by α -tocopherol, a type of vitamin E and potent antioxidant, and α-tocopherol also suppressed the effect of siramesine on glucose uptake, suggesting a role for reactive oxygen species and membrane maintenance. We have also identified a novel mechanism for siramesine in which it inhibited plasma membrane levels of GAPDH, a key protein in glycolysis which localizes to the plasma membrane in some cell types. Indeed, GAPDH inhibitors decreased glucose uptake, like siramesine, likely through an overlapping pathway with siramesine. GAPDH inhibitors induced autophagy but inhibited degradation of autophagy targets. Thus, we have identified novel mechanisms required for glucose uptake which may have important implications in disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819679PMC
http://dx.doi.org/10.1016/j.brainres.2021.147747DOI Listing

Publication Analysis

Top Keywords

glucose uptake
24
plasma membrane
12
degradation autophagy
8
identified novel
8
gapdh inhibitors
8
glucose
7
siramesine
7
uptake
6
autophagy
5
dependence glucose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!