Impact of urbanization on the food-water-land-ecosystem nexus: A study of Shenzhen, China.

Sci Total Environ

College of Architecture and Environment, Sichuan University, Chengdu 610065, China. Electronic address:

Published: February 2022

The food-water-land-ecosystem (FWLE) nexus is fundamental for achieving sustainable development. This study examines the influence of urbanization on the FWLE nexus. Toward this end, land was deemed as an entry point. Therefore, the impact of urbanization on the nexus was explored based on changes in land use. We selected Shenzhen, a city in China, as the study area. First, a land change modeler was employed to analyze historical land-use changes from 2000 to 2010, to build transition potential submodels, and to project future land-use patterns for 2030 under a business-as-usual scenario. Second, based on land-use maps, we assessed habitat quality, water yield, and water supply from 2000 to 2030 using Integrated Valuation of Ecosystem Services and Tradeoffs. Moreover, crop production was estimated according to statistical materials. Finally, the study presents the analyses and discussion of the impacts of urbanization on ecosystem services related to the FWLE nexus. The results of land-use changes indicated that a significant expansion of artificial surfaces occurred in Shenzhen with varying degrees of decrease in cultivated land, forest, and grassland. Furthermore, habitat quality, water supply, and crop production decreased evidently due to rapid urbanization. In contrast, the total water yield indicated an upward trend owing to the increased water yield from increasing artificial surfaces, whereas water yield from other land-use areas declined, such as the forest and grassland. The results demonstrated a significant positive correlation between artificial surfaces and total water yield. However, negative correlations were observed in the interaction among habitat quality, water supply, and crop production. The study presented temporal and spatial assessments to provide an effective and convenient means of exploring the interactions and tradeoffs within the FWLE nexus, which, thus, contributed to the sustainable transformation of urbanization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152138DOI Listing

Publication Analysis

Top Keywords

water yield
20
fwle nexus
16
habitat quality
12
quality water
12
water supply
12
crop production
12
artificial surfaces
12
impact urbanization
8
land-use changes
8
water
8

Similar Publications

Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent.

View Article and Find Full Text PDF

Dynamic Covalent Sulfur-Selenium Rich Polymers via Inverse Vulcanization for High Refractive Index, High Transmittance, and UV Shielding Materials.

Macromol Rapid Commun

January 2025

College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.

Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.

View Article and Find Full Text PDF

Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.

View Article and Find Full Text PDF

Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles.

View Article and Find Full Text PDF

Melatonin is considered an effective bio-stimulant that is crucial in managing several abiotic stresses including drought. However, its potential mechanisms against drought stress in fragrant roses are not well understood. Here, we aim to investigate the role of melatonin on plants cultivated under drought stress (40 % field capacity) and normal irrigation (80 % field capacity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!