Microfluidic systems have shown promise for the production of nanoparticles from mixtures of aqueous and organic solutions, including liposomes, oil-in-water nanoemulsions, and lipid nanoparticles. They offer important practical advantages, including low reagent consumption, parallelization, and automation, and are ideally suited to high-throughput optimization and scale-up. In this study, we developed a new method for the formulation of nanoparticles of poorly soluble drug compounds. The nanoparticles, prepared by microfluidic mixing using only poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE), were highly stable and uniform in size. By mixing an organic solution of poorly soluble cyclosporine A and PEG-DSPE with water in the microfluidic device, amorphous cyclosporine A nanoparticles (CsA-NPs), with an encapsulation efficiency of approximately 90% and a particle size of 100-200 nm, were obtained. Analysis of the microfluidic process parameters revealed that particle size distribution was significantly controlled by the flow rate ratio. The obtained CsA-NPs were stable for up to 150 days at room temperature, and the pharmacokinetic profile was similar to that of the commercial formulation containing Cremophor EL, which has been reported to induce serious adverse effects after intravenous administration. These findings provide a useful technical platform for the safe solubilization of poorly soluble compounds and their subsequent pharmaceutical development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2021.11.021 | DOI Listing |
AAPS PharmSciTech
November 2024
Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Osteosarcoma (OS) is one of the most common primary bone sarcoma with high malignant degree and poor prognosis, for which there is an urgent need to develop novel therapeutic approaches. Recent research has revealed that mifamurtide significantly improved the outcome of OS patients when combined with adjuvant chemotherapy drugs including cisplatin (DDP). The present study aimed to construct a drug delivery system co-loading DDP and mifamurtide.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Pharmacology, Harbin Medical University, Heilongjiang, 163319, People's Republic of China.
Purpose: Myocardial ischemia-reperfusion injury (MI/RI) is associated with increased oxidative damage and mitochondrial dysfunction, resulting in an elevated risk of mortality. MI/RI may be alleviated by protecting cardiomyocytes from oxidative stress. Lutein, which belongs to a class of carotenoids, has proven to be effective in cardiovascular disease treatment due to its remarkable antioxidant properties, but its application is limited due to its poor stability and low bioavailability in vivo.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Pharmaceutical Science of São Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil. Electronic address:
Breast cancer stands as the most common form of malignancy among women globally, and it showcases commendable rates of cure when detected in early-stage and non-metastatic conditions. To overcome drug resistance and side effects observed in conventional chemotherapy, the present study aims to deliver rapamycin (RAP), a mTOR protein inhibitor, into a nanostructured lipid carrier (NLC) functionalized with folic acid for promoting active targeting to breast cancer cells. In the first step, the synthesis of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[amino(polyethylene glycol)-2000] (ammonium salt) with folic acid (DSPE-PEG-FA) was successfully performed and characterized by UV spectroscopy, nuclear magnetic resonance, and infrared spectroscopy.
View Article and Find Full Text PDFACS Biomater Sci Eng
October 2024
Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
Poly(lactide--glycolide) (PLGA) is a biocompatible and biodegradable copolymer that has gained high acceptance in biomedical applications. In the present study, PLGA ( = 13,900) was synthesized by ring-opening polymerization in the presence of a biocompatible zinc-proline initiator through a green route. Irinotecan (Ir) loaded with efficient PLGA core-lipid shell hybrid nanocarriers (lipomers, LPs) were formulated with 1,2-distearoyl--glycero-3-phosphoethanolamine and 1,2-distearoyl--glycero-3-phosphoethanolamine--[amino (polyethylene glycol)-2000] (DSPE-PEG-2000), using soya lecithin, by a nanoprecipitation method, and the fabricated LPs were designated as P-DSPE-Ir and P-DSPE-PEG-Ir, respectively.
View Article and Find Full Text PDFInt J Nanomedicine
September 2024
Department of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, People's Republic of China.
Purpose: Ischemic stroke is a refractory disease wherein the reperfusion injury caused by sudden restoration of blood supply is the main cause of increased mortality and disability. However, current therapeutic strategies for the inflammatory response induced by cerebral ischemia-reperfusion (I/R) injury are unsatisfactory. This study aimed to develop a functional nanoparticle (MM/ANPs) comprising apelin-13 (APNs) encapsulated in macrophage membranes (MM) modified with distearoyl phosphatidylethanolamine-polyethylene glycol-RVG29 (DSPE-PEG-RVG29) to achieve targeted therapy against ischemic stroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!