Asian gypsy moth (Lymantria dispar L.) populations: Tolerance of eggs to extreme winter temperatures.

J Therm Biol

FBRI State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559, Koltsovo, Novosibirsk Region, Russia. Electronic address:

Published: December 2021

Gypsy moth Lymantria dispar (GM) is a polyphagous insect and one of the most significant pests in the forests of Eurasia and North America (U.S. and Canada). Accurate information on GM cold-hardiness is needed to improve methods for the prediction of population outbreaks, as well as for forecasting possible GM range displacements due to climate change. As a result of laboratory and field studies, we found that the lower lethal temperature (at which all eggs die) range from -29.0 °C to -29.9 °C for three studied populations of L. dispar asiatica, and no egg survived cooling to -29.9 °C. These limits agree, to within one degree, with the previously established cold-hardiness limits of the European subspecies L. dispar, which is also found in North America. This coincidence indicates that the lower lethal temperature of L. dispar is conservative. Thus, we found that the Siberian populations of GM inhabit an area where winter temperatures go beyond the limits of egg physiological tolerance, because temperatures often fall below -30 °C. Apparently, it is due to the flexibility of ovipositional behavior that L. dispar asiatica survives in Siberia: the lack of physiological tolerance of eggs is compensated by choosing warm biotopes for oviposition. One of the most important factors contributing to the survival of GM eggs in Siberia is the stability of the snow cover.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2021.103123DOI Listing

Publication Analysis

Top Keywords

gypsy moth
8
moth lymantria
8
lymantria dispar
8
tolerance eggs
8
winter temperatures
8
north america
8
lower lethal
8
lethal temperature
8
dispar asiatica
8
physiological tolerance
8

Similar Publications

AMPK (AMP-activated protein kinase) is a crucial cellular energy sensor across all eukaryotic species. Its multiple roles in maintaining energy homeostasis, regulating cellular metabolic processes have been widely investigated in mammals. In contrast, the function of AMPK in insects has been less reported.

View Article and Find Full Text PDF

Susceptibility of Lymantria dispar to Beauveria bassiana under short-term Cd stress: Humoral immunostimulation cannot offset cellular immunotoxicity.

J Hazard Mater

December 2024

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

Heavy metal is a serious environmental pollutant with all kinds of biotoxic effects. The immunomodulatory effects of Cd stress on Lymantria dispar larvae and its underlying mechanisms were investigated. The susceptibility of Cd-treated larvae to Beauveria bassiana (Bb) was significantly increased by 27.

View Article and Find Full Text PDF

Cd exposure confers β-cypermethrin tolerance in Lymantria dispar by activating the ROS/CnCC signaling pathway-mediated P450 detoxification.

J Hazard Mater

October 2024

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

Heavy metal pollutants are important abiotic environmental factors affecting pest habitats. In this study, Cd pre-exposure significantly increased the tolerance of Lymantria dispar larvae to β-cypermethrin, but did not significantly alter their tolerance to λ-cyhalothrin and bifenthrin. The activation of P450 by Cd exposure is the key mechanism that induces insecticide cross-tolerance in L.

View Article and Find Full Text PDF

Forest pests pose a major threat to ecosystem services worldwide, requiring effective monitoring and management strategies. Recently, satellite remote sensing has emerged as a valuable tool to detect defoliation caused by these pests. Lymantria dispar, a major forest pest native to Japan, Siberia, and Europe, as well as introduced regions in North America, is of particular concern.

View Article and Find Full Text PDF

Background: Flight can drastically enhance dispersal capacity and is a key trait defining the potential of exotic insect species to spread and invade new habitats. The phytophagous European spongy moths (ESM, Lymantria dispar dispar) and Asian spongy moths (ASM; a multi-species group represented here by L. d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!