Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials.

Fungal Biol Biotechnol

Architectural Engineering Research Group, Department of Architectural Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.

Published: December 2021

Background: While mycelium is considered a promising alternative for fossil-based resins in lignocellulosic materials, the mechanical properties of mycelium composite materials remain suboptimal, among other reasons due to the weak internal bonds between the hyphae and the natural fibres. A solution could be provided by the hybridisation of mycelium materials with organic additives. More specifically, bacterial cellulose seems to be a promising additive that could result in reinforcing mycelium composites; however, this strategy is underreported in scientific literature.

Results: In this study, we set out to investigate the mechanical properties of mycelium composites, produced with the white-rot fungus Trametes versicolor, and supplemented with bacterial cellulose as an organic additive. A methodological framework is developed for the facile production of bacterial cellulose and subsequent fabrication of mycelium composite particle boards based on a hybrid substrate consisting of bacterial cellulose and hemp in combination with a heat-pressing approach. We found that, upon adding bacterial cellulose, the internal bond of the composite particle boards significantly improved.

Conclusions: The addition of bacterial cellulose to mycelium composite materials not only results in a strengthening of internal bonding of mycelium material, but also renders tuneable mechanical properties to the material. As such, this study contributes to the ongoing development of fully biological hybrid materials with performant mechanical characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645105PMC
http://dx.doi.org/10.1186/s40694-021-00125-4DOI Listing

Publication Analysis

Top Keywords

bacterial cellulose
24
mycelium composite
16
composite materials
12
mechanical properties
12
mycelium
9
mechanical characteristics
8
properties mycelium
8
mycelium composites
8
composite particle
8
particle boards
8

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

(P)ppGpp synthetase Rel facilitates cellulose formation of biofilm by regulating glycosyltransferase in Brucella abortus.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China. Electronic address:

Biofilms are complex adhesive structures that establish chronic infection and allow robust protection from external stressors such as antibiotics. Cellulose as one of the compositions of bacteria biofilm which protect bacteria from stress, host immune responses and resistance to antibiotics. Bacterial stress responses are regulated via guanosine pentaphosphate and tetraphosphate (p)ppGpp.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!