Proteogenomics analysis of CUG codon translation in the human pathogen Candida albicans.

BMC Biol

Theoretical Computer Science and Algorithmic Methods Group, Institute of Computer Science, University of Göttingen, Goldschmidtstr. 7, 37077, Göttingen, Germany.

Published: December 2021

Background: Yeasts of the CTG-clade lineage, which includes the human-infecting Candida albicans, Candida parapsilosis and Candida tropicalis species, are characterized by an altered genetic code. Instead of translating CUG codons as leucine, as happens in most eukaryotes, these yeasts, whose ancestors are thought to have lost the relevant leucine-tRNA gene, translate CUG codons as serine using a serine-tRNA with a mutated anticodon, [Formula: see text]. Previously reported experiments have suggested that 3-5% of the CTG-clade CUG codons are mistranslated as leucine due to mischarging of the [Formula: see text]. The mistranslation was suggested to result in variable surface proteins explaining fast host adaptation and pathogenicity.

Results: In this study, we reassess this potential mistranslation by high-resolution mass spectrometry-based proteogenomics of multiple CTG-clade yeasts, including various C. albicans strains, isolated from colonized and from infected human body sites, and C. albicans grown in yeast and hyphal forms. Our data do not support a bias towards CUG codon mistranslation as leucine. Instead, our data suggest that (i) CUG codons are mistranslated at a frequency corresponding to the normal extent of ribosomal mistranslation with no preference for specific amino acids, (ii) CUG codons are as unambiguous (or ambiguous) as the related CUU leucine and UCC serine codons, (iii) tRNA anticodon loop variation across the CTG-clade yeasts does not result in any difference of the mistranslation level, and (iv) CUG codon unambiguity is independent of C. albicans' strain pathogenicity or growth form.

Conclusions: Our findings imply that C. albicans does not decode CUG ambiguously. This suggests that the proposed misleucylation of the [Formula: see text] might be as prevalent as every other misacylation or mistranslation event and, if at all, be just one of many reasons causing phenotypic diversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645108PMC
http://dx.doi.org/10.1186/s12915-021-01197-9DOI Listing

Publication Analysis

Top Keywords

cug codons
20
cug codon
12
[formula text]
12
cug
9
candida albicans
8
codons mistranslated
8
ctg-clade yeasts
8
codons
6
mistranslation
6
albicans
5

Similar Publications

Article Synopsis
  • Respiration in eukaryotes relies on mitochondrial protein synthesis, which is guided by organelle-specific ribosomes that translate mitochondrial mRNAs, although many details of this process remain unclear.
  • Researchers mapped the 3' ends of mitochondrial mRNAs in different yeast species and identified sequence elements called 3'-end RNA processing elements (3'-RPEs), essential for processing mitochondrial RNA.
  • The study highlights the role of the Rmd9 protein in this processing, showing its interaction with 3'-RPEs across various yeast species, and uncovers a unique translation mechanism involving removed stop codons in certain mRNAs.
View Article and Find Full Text PDF

Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions.

Mol Cell

October 2024

Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA. Electronic address:

While many mRNAs contain more than one translation initiation site (TIS), the functions of most alternative TISs and their corresponding protein isoforms (proteoforms) remain undetermined. Here, we showed that alternative usage of CUG and AUG TISs in neuronal pentraxin receptor (NPR) mRNA produced two proteoforms, of which the ratio was regulated by RNA secondary structure and neuronal activity. Downstream AUG initiation truncated the N-terminal transmembrane domain and produced a secreted NPR proteoform sufficient in promoting synaptic clustering of AMPA-type glutamate receptors.

View Article and Find Full Text PDF

Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNA bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNA in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain.

View Article and Find Full Text PDF

In the yeast genera Saccharomycopsis and Ascoidea, which comprise the taxonomic order Ascoideales, nuclear genes use a nonstandard genetic code in which CUG codons are translated as serine instead of leucine, due to a tRNA-Ser with the unusual anticodon CAG. However, some species in this clade also retain an ancestral tRNA-Leu gene with the same anticodon. One of these species, Ascoidea asiatica, has been shown to have a stochastic proteome in which proteins contain ∼50% Ser and 50% Leu at CUG codon sites, whereas previously examined Saccharomycopsis species translate CUG only as Ser.

View Article and Find Full Text PDF

A Proteogenomic Pipeline for the Analysis of Protein Biosynthesis Errors in the Human Pathogen Candida albicans.

Mol Cell Proteomics

September 2024

Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal; Multidisciplinary Institute of Ageing (MIA-Portugal), University of Coimbra, Coimbra, Portugal. Electronic address:

Candida albicans is a diploid pathogen known for its ability to live as a commensal fungus in healthy individuals but causing both superficial infections and disseminated candidiasis in immunocompromised patients where it is associated with high morbidity and mortality. Its success in colonizing the human host is attributed to a wide range of virulence traits that modulate interactions between the host and the pathogen, such as optimal growth rate at 37 °C, the ability to switch between yeast and hyphal forms, and a remarkable genomic and phenotypic plasticity. A fascinating aspect of its biology is a prominent heterogeneous proteome that arises from frequent genomic rearrangements, high allelic variation, and high levels of amino acid misincorporations in proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!