Lithium inhibits tryptophan catabolism via the inflammation-induced kynurenine pathway in human microglia.

Glia

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Neurologie und Abteilung für Experimentelle Neurologie, Berlin, Germany.

Published: March 2022

Despite its decades' long therapeutic use in psychiatry, the biological mechanisms underlying lithium's mood-stabilizing effects have remained largely elusive. Here, we investigated the effect of lithium on tryptophan breakdown via the kynurenine pathway using immortalized human microglia cells, primary human microglia isolated from surgical specimens, and microglia-like cells differentiated from human induced pluripotent stem cells. Interferon (IFN)-γ, but not lipopolysaccharide, was able to activate immortalized human microglia, inducing a robust increase in indoleamine-2,3-dioxygenase (IDO1) mRNA transcription, IDO1 protein expression, and activity. Further, chromatin immunoprecipitation verified enriched binding of both STAT1 and STAT3 to the IDO1 promoter. Lithium counteracted these effects, increasing inhibitory GSK3β phosphorylation and reducing STAT1 and STAT3 phosphorylation levels in IFN-γ treated cells. Studies in primary human microglia and hiPSC-derived microglia confirmed the anti-inflammatory effects of lithium, highlighting that IDO activity is reduced by GSK3 inhibitor SB-216763 and STAT inhibitor nifuroxazide via downregulation of P-STAT1 and P-STAT3 . Primary human microglia differed from immortalized human microglia and hiPSC derived microglia-like cells in their strong sensitivity to LPS, resulting in robust upregulation of IDO1 and anti-inflammatory cytokine IL-10. While lithium again decreased IDO1 activity in primary cells, it further increased release of IL-10 in response to LPS. Taken together, our study demonstrates that lithium inhibits the inflammatory kynurenine pathway in the microglia compartment of the human brain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24123DOI Listing

Publication Analysis

Top Keywords

human microglia
28
kynurenine pathway
12
immortalized human
12
primary human
12
human
9
microglia
9
lithium inhibits
8
microglia-like cells
8
stat1 stat3
8
lithium
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!