Demographic feedbacks can hamper the spatial spread of a gene drive.

J Math Biol

CNRS, Sorbonne Université, Université Paris Est Creteil, INRAE, IRD, Institute of Ecology and Environmental Sciences, Paris, IEES-Paris, 4 Place Jussieu, 75005, Paris, France.

Published: December 2021

AI Article Synopsis

  • The paper analyzes a reaction-diffusion model for gene drive invasion in populations, focusing on how a gene drive that negatively affects individual fitness influences population dynamics.
  • The study emphasizes that the gene drive must counteract demographic forces that could hinder its spread, a factor often overlooked in previous models.
  • Results highlight the importance of understanding the interaction between population dynamics and genetics, suggesting that this interplay can reverse gene drive invasion success and has broader implications for similar biological systems.

Article Abstract

This paper is concerned with a reaction-diffusion system modeling the fixation and the invasion in a population of a gene drive (an allele biasing inheritance, increasing its own transmission to offspring). In our model, the gene drive has a negative effect on the fitness of individuals carrying it, and is therefore susceptible of decreasing the total carrying capacity of the population locally in space. This tends to generate an opposing demographic advection that the gene drive has to overcome in order to invade. While previous reaction-diffusion models neglected this aspect, here we focus on it and try to predict the sign of the traveling wave speed. It turns out to be an analytical challenge, only partial results being within reach, and we complete our theoretical analysis by numerical simulations. Our results indicate that taking into account the interplay between population dynamics and population genetics might actually be crucial, as it can effectively reverse the direction of the invasion and lead to failure. Our findings can be extended to other bistable systems, such as the spread of cytoplasmic incompatibilities caused by Wolbachia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00285-021-01702-2DOI Listing

Publication Analysis

Top Keywords

gene drive
16
demographic feedbacks
4
feedbacks hamper
4
hamper spatial
4
spatial spread
4
gene
4
spread gene
4
drive
4
drive paper
4
paper concerned
4

Similar Publications

Sodium nitrite orchestrates macrophage mimicry of tongue squamous carcinoma cells to drive lymphatic metastasis.

Br J Cancer

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China.

Background: Tongue squamous cell carcinoma (TSCC) is a malignant oral cancer with unclear pathogenesis that shows a tendency for early-stage lymphatic metastasis. This results in a poor prognosis, with a low 5-year survival rate. Dietary sodium nitrite (NaNO) has proposed associations with disease, including cancer.

View Article and Find Full Text PDF

Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions.

View Article and Find Full Text PDF

Identification of U6 Promoter and Establishment of Gene-Editing System in (Lamb.) Carr.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

This study aimed to establish a CRISPR/Cas9 gene-editing system for (Lamb.) Carr. (Japanese larch).

View Article and Find Full Text PDF

Melanoma is among the most abundant malignancies in the US and worldwide. Ligstroside aglycone (LA) is a rare extra-virgin olive oil-derived monophenolic secoiridoid with diverse bioactivities. LA dose-response screening at the NCI 60 cancer cells panel identified the high sensitivity of the Malme-3M cell line, which harbors a mutation.

View Article and Find Full Text PDF

Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!