Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting.

Adv Sci (Weinh)

Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, 79104, Germany.

Published: January 2022

3D-bioprinting (3DBP) possesses several elements necessary to overcome the deficiencies of conventional tissue engineering, such as defining tissue shape a priori, and serves as a bridge to clinical translation. This transformative potential of 3DBP hinges on the development of the next generation of bioinks that possess attributes for clinical use. Toward this end, in addition to physicochemical characteristics essential for printing, bioinks need to possess proregenerative attributes, while enabling printing of stable structures with a defined biological function that survives implantation and evolves in vivo into functional tissue. With a focus on bioinks for extrusion-based bioprinting, this perspective review advocates a rigorous biology-based approach to engineering bioinks, emphasizing efficiency, reproducibility, and a streamlined translation process that places the clinical endpoint front and center. A blueprint for engineering the next generation of bioinks that satisfy the aforementioned performance criteria for various translational levels (TRL1-5) and a characterization tool kit is presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787414PMC
http://dx.doi.org/10.1002/advs.202103469DOI Listing

Publication Analysis

Top Keywords

generation bioinks
8
bioinks possess
8
bioinks
6
biobridge outlook
4
outlook translational
4
translational bioinks
4
bioinks bioprinting
4
bioprinting 3d-bioprinting
4
3d-bioprinting 3dbp
4
3dbp possesses
4

Similar Publications

Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs.

View Article and Find Full Text PDF

Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.

View Article and Find Full Text PDF

3D bioprinting of the airways and lungs for applications in tissue engineering and in vitro models.

J Tissue Eng

December 2024

Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, People's Republic of China.

Tissue engineering and in vitro modeling of the airways and lungs in the respiratory system are of substantial research and clinical importance. In vitro airway and lung models aim to improve treatment options for airway and lung repair and advance respiratory pathophysiological research. The construction of biomimetic native airways and lungs with tissue-specific biological, mechanical, and configurable features remains challenging.

View Article and Find Full Text PDF

A bioprinted and scalable model of human tubulo-interstitial kidney fibrosis.

Biomaterials

May 2025

Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands. Electronic address:

Chronic kidney disease (CKD) affects more than 10% of the global population. As kidney function negatively correlates with the presence of interstitial fibrosis, the development of new anti-fibrotic therapies holds promise to stabilize functional decline in CKD patients. The goal of the study was to generate a scalable bioprinted 3-dimensional kidney tubulo-interstitial disease model of kidney fibrosis.

View Article and Find Full Text PDF
Article Synopsis
  • - Bone organoids are being developed to study bone growth and diseases, but current methods often fall short because they create simplistic structures that don't mimic real bone well or allow for proper mineralization.
  • - A new approach using 3D printing and a bioink made from bone marrow-derived stem cells aims to create more complex and functional bone structures, which can form bone tissue independently when implanted into mice.
  • - This innovative bone organoid model provides a valuable new platform for researchers to investigate bone development, test therapies, and understand congenital conditions more effectively.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!