Mutualistic relationship between Nitrospira and concomitant heterotrophs.

Environ Microbiol Rep

Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.

Published: February 2022

Nitrifying chemoautotrophs support the growth of diverse concomitant heterotrophs in natural or engineered environments by supplying organic compounds. In this study, we aimed to investigate this microbial association, especially (i) to distinguish whether the relationship between nitrifying chemoautotrophs and heterotrophs is commensal or mutualistic, and (ii) to clarify how heterotrophs promote the growth of autotrophic nitrite-oxidizing bacteria (Nitrospira). Pure cultured Nitrospira (Nitrospira sp. ND1) was employed in this study. Heterotrophs growing with metabolic by-products of Nitrospira as a sole carbon source were isolated from several environmental samples and used to test the growth-promoting activity of Nitrospira. Furthermore, liquid chromatography-mass spectrometry analysis was conducted to evaluate how heterotrophs consumed chemical compounds produced by Nitrospira and newly produced during co-cultivation. Notably, Nitrospira growth was stimulated by co-cultivation with some heterotrophs and the addition of spent media of some strains, suggesting that not only heterotrophs but also Nitrospira received benefits from their mutual co-existence. Furthermore, the data suggested that some of the growth-promoting heterotrophs provided as-yet-unidentified growth-promoting factors to Nitrospira. Overall, Nitrospira and heterotrophs thus appear to exhibit a mutualistic relationship. Such mutualistic relationships between autotrophs and heterotrophs would contribute to the stability and diversity of microbial ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300095PMC
http://dx.doi.org/10.1111/1758-2229.13030DOI Listing

Publication Analysis

Top Keywords

nitrospira
11
heterotrophs
11
mutualistic relationship
8
concomitant heterotrophs
8
nitrifying chemoautotrophs
8
nitrospira nitrospira
8
mutualistic
4
relationship nitrospira
4
nitrospira concomitant
4
heterotrophs nitrifying
4

Similar Publications

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.

View Article and Find Full Text PDF

Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders.

Sci Rep

January 2025

Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.

Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated.

View Article and Find Full Text PDF

Metagenomic Analysis Revealing the Impact of Water Contents on the Composition of Soil Microbial Communities and the Distribution of Major Ecological Functional Genes in Poyang Lake Wetland Soil.

Microorganisms

December 2024

Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.

Poyang Lake is the largest freshwater lake in China, which boasts unique hydrological conditions and rich biodiversity. In this study, metagenomics technology was used to sequence the microbial genome of soil samples S1 (sedimentary), S2 (semi-submerged), and S3 (arid) with different water content from the Poyang Lake wetland; the results indicate that the three samples have different physicochemical characteristics and their microbial community structure and functional gene distribution are also different, resulting in separate ecological functions. The abundance of typical ANME archaea and the high abundance of in S1 mutually demonstrate prominent roles in the methane anaerobic oxidation pathway during the methane cycle.

View Article and Find Full Text PDF

Impact of Biochar on Nitrogen-Cycling Functional Genes: A Comparative Study in Mollisol and Alkaline Soils.

Life (Basel)

December 2024

Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin 150086, China.

Biochar has gained considerable attention as a sustainable soil amendment due to its potential to enhance soil fertility and mitigate nitrogen (N) losses. This study aimed to investigate the effects of biochar application on the abundance of key N-cycling genes in Mollisol and alkaline soils, focusing on nitrification (AOA, AOB, and ) and denitrification (, , and ) processes. The experiment was conducted using soybean rhizosphere soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!