Fluorophores with emission in the second near-infrared (NIR-II) window have displayed salient advantages for biomedical applications. However, exploration of new luminogens with high NIR-II fluorescent brightness is still challenging. Herein, based on the "ring-fusion" strategy, a series of heteroatom-inserted rigid-planar cores is proposed to achieve the bathochromic NIR-II fluorophores with aggregation-induced emission (AIE) performance. Interestingly, one of the representative fluorophores, 4,4'-(5,5'-([1,2,5]thiadiazolo[3,4-i]dithieno[2,3-a:3',2'-c]phenazine-8,12-diyl)bis(4-octylthiophene-5,2-diyl))bis(N,N-diphenylaniline) (TTQiT), enjoys a maximum emission beyond 1100 nm because of the efficiently narrowed energy bandgap by electron-rich sulfur-atom-inserted core, which is verified by theoretical calculation. Taking advantage of the bright NIR-II emission of TTQiT nanoparticles, the desirable in vivo NIR-II imaging with high signal-to-background ratios is successfully performed and a long-term stem cell tracking in the detection of acute lung injury is further realized. Therefore, it is anticipated that this work will provide a promising molecular engineering strategy to enrich the scope of NIR-II fluorophores for catering to diverse demands in biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202105362DOI Listing

Publication Analysis

Top Keywords

heteroatom-inserted rigid-planar
8
rigid-planar cores
8
acute lung
8
lung injury
8
biomedical applications
8
nir-ii fluorophores
8
nir-ii
6
promoted nir-ii
4
nir-ii fluorescence
4
fluorescence heteroatom-inserted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!