Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aflatoxin is a highly toxic substance dispersed in peanuts, which seriously harms the health of humans and animals. In this paper, we propose a new method for aflatoxin B1(AFB1) detection inspired by quantitative remote sensing. Firstly, we obtained the relative content of AFB1 at the sub-pixel level by subpixel decomposition (endmember extraction, nonnegative matrix decomposition). Then we modified the transfer learning models (LeNet5, AlexNet, VGG16, and ResNet18) to construct a deep learning regression network for quantitative detection of AFB1. There are 67,178 pixels used for training and 67,164 pixels used for testing. After subpixel decomposition, each aflatoxin pixel was determined to contain content, and each pixel had 400 hyperspectral values (415-799 nm). The experimental results showed that, among the four models, the modified ResNet18 model achieved the best effect, with R of 0.8898, RMSE of 0.0138, and RPD of 2.8851. Here, we implemented a sub-pixel model for quantitative AFB1 detection and proposed a regression method based on deep learning. Meanwhile, the modified convolution classification model has high predictive ability and robustness. This method provides a new scheme in designing the sorting machine and has practical value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.120633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!