A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Harm Among Forensic Psychiatric Inpatients With Schizophrenia Spectrum Disorders: An Explorative Analysis. | LitMetric

AI Article Synopsis

  • The study investigates the prevalence of self-injury among patients with schizophrenia spectrum disorders (SSD) in forensic psychiatry, utilizing a sample of 356 inmates from a Swiss facility.
  • Using machine learning to analyze 512 potential predictors, the research identified ten key variables that effectively distinguished self-injuring patients from those who did not, achieving balanced accuracy of 68%.
  • Findings indicate that younger patients with SSD who self-injured displayed more severe symptoms of depression and anxiety upon admission, suggesting these symptoms could be critical targets for future prevention efforts.

Article Abstract

The burden of self-injury among offenders undergoing inpatient treatment in forensic psychiatry is substantial. This exploratory study aims to add to the previously sparse literature on the correlates of self-injury in inpatient forensic patients with schizophrenia spectrum disorders (SSD). Employing a sample of 356 inpatients with SSD treated in a Swiss forensic psychiatry hospital, patient data on 512 potential predictor variables were retrospectively collected via file analysis. The dataset was examined using supervised machine learning to distinguish between patients who had engaged in self-injurious behavior during forensic hospitalization and those who had not. Based on a combination of ten variables, including psychiatric history, criminal history, psychopathology, and pharmacotherapy, the final machine learning model was able to discriminate between self-injury and no self-injury with a balanced accuracy of 68% and a predictive power of AUC = 71%. Results suggest that forensic psychiatric patients with SSD who self-injured were younger both at the time of onset and at the time of first entry into the federal criminal record. They exhibited more severe psychopathological symptoms at the time of admission, including higher levels of depression and anxiety and greater difficulty with abstract reasoning. Of all the predictors identified, symptoms of depression and anxiety may be the most promising treatment targets for the prevention of self-injury in inpatient forensic patients with SSD due to their modifiability and should be further substantiated in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0306624X211062139DOI Listing

Publication Analysis

Top Keywords

forensic psychiatric
8
schizophrenia spectrum
8
spectrum disorders
8
forensic psychiatry
8
self-injury inpatient
8
inpatient forensic
8
forensic patients
8
machine learning
8
patients ssd
8
depression anxiety
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!