Machine learning, artificial intelligence and the prediction of dementia.

Curr Opin Psychiatry

University of Waikato, School of Psychology, Hamilton, New Zealand.

Published: March 2022

Purpose Of Review: Artificial intelligence and its division machine learning are emerging technologies that are increasingly applied in medicine. Artificial intelligence facilitates automatization of analytical modelling and contributes to prediction, diagnostics and treatment of diseases. This article presents an overview of the application of artificial intelligence in dementia research.

Recent Findings: Machine learning and its branch Deep Learning are widely used in research to support in diagnosis and prediction of dementia. Deep Learning models in certain tasks often result in better accuracy of detection and prediction of dementia than traditional machine learning methods, but they are more costly in terms of run times and hardware requirements. Both machine learning and Deep Learning models have their own strengths and limitations. Currently, there are few datasets with limited data available to train machine learning models. There are very few commercial applications of machine learning in medical practice to date, mostly represented by mobile applications, which include questionnaires and psychometric assessments with limited machine learning data processing.

Summary: Application of machine learning technologies in detection and prediction of dementia may provide an advantage to psychiatry and neurology by promoting a better understanding of the nature of the disease and more accurate evidence-based processes that are reproducible and standardized.

Download full-text PDF

Source
http://dx.doi.org/10.1097/YCO.0000000000000768DOI Listing

Publication Analysis

Top Keywords

machine learning
36
artificial intelligence
16
prediction dementia
16
deep learning
12
learning models
12
learning
11
machine
9
detection prediction
8
prediction
5
dementia
5

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!