Putrescine regulates stomatal opening of cucumber leaves under salt stress via the HO-mediated signaling pathway.

Plant Physiol Biochem

College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China. Electronic address:

Published: January 2022

The stomatal aperture is imperative for photosynthesis in higher plants. The function of polyamines (PAs) in stomatal regulation under a stressful environment has not been fully determined. In this study, we demonstrated the mechanism by which putrescine (Put) regulates stomatal changes in cucumber leaves under salt stress. The results showed that foliar application of Put alleviated the decrease of stomatal aperture and photosynthesis caused by salt stress and promoted plant growth. Exogenous Put caused a significant increase in endogenous PAs and hydrogen peroxide (HO) levels by 105.43% and 27.97%, respectively, while decreased abscisic acid (ABA) content by 67.68% under salt stress. However, application of inhibitors of aminoguanidine hydrochloride (AG), 1, 8-diaminooctane (1, 8-DO), diphenyleneiodonium chloride (DPI) and salicylhydroxamic acid (SHAM) upregulated the 9-cis-cyclocarotenoid dioxygenase (NCED) gene and downregulated the reduced glutathione synthetase (GSHS) gene. These inhibitors also decreased the stomatal aperture, levels of HO and reduced glutathione (GSH), but increased the ABA content under salt stress and Put treatment conditions. The order of influence is AG > 1, 8-DO > DPI > SHAM. However, Put-induced downregulation of ABA content and upregulation of GSH content under salt stress were effectively blocked by N, N'-dimethylthiourea (DMTU, HO scavenger) and 1-chloro-2,4-dinitrobenzene (CDNB, GSH scavenger) treatments. Taken together, these results suggest that Put induced the formation of HO signaling mediates the degradation of PAs by diamine oxidase (DAO), increasing GSH content and inhibiting the accumulation of ABA in leaves, thereby promoting stomatal opening in salt-stressed cucumber leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.11.028DOI Listing

Publication Analysis

Top Keywords

salt stress
24
cucumber leaves
12
stomatal aperture
12
aba content
12
putrescine regulates
8
regulates stomatal
8
stomatal opening
8
leaves salt
8
reduced glutathione
8
content salt
8

Similar Publications

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions.

View Article and Find Full Text PDF

Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.

View Article and Find Full Text PDF

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Introduction: Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!