Cyclic fatigue tests on non-anatomic specimens of dental ceramic materials: A scoping review.

J Mech Behav Biomed Mater

MSciD and PhD Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil. Electronic address:

Published: February 2022

The aim of the present scoping review was to identify and discuss the methods, testing parameters, and characteristics used to induce cyclic fatigue on non-anatomic dental ceramic specimens. In vitro studies written in English which evaluated commercially-available non-anatomic dental ceramic specimens subjected to mechanical cyclic fatigue were selected. The search was performed in the PubMed, Scopus and Web of Science databases. The initial search yielded 1,636 articles, of which 81 were included. Based on the collected data, most of the included studies evaluated dental ceramic specimens cemented to supporting substrate (n= 42; 51.9%); used step-stress (n= 35; 42.2%) accelerated fatigue test, loading frequencies above 10 Hz (n= 31, 35.6%), stainless steel (n = 28, 32.6%) load applicator with spherical shaped tip 40 mm diameter (n= 25, 30.9%); applied only axial loads (n= 77, 95.1%); and considered a wet testing environment (n= 65, 78.3%). The definition of test geometry, method, and testing parameters must be cautiously considered according to the study objective and the scenario that is simulated. Accelerated fatigue tests, load frequencies up to 20 Hz, a 40 mm stainless steel spherical load applicator and a wet testing environment are the major common defined parameters presented in the existing literature. More studies exploring the influence of such factors on fatigue mechanism are necessary.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2021.104985DOI Listing

Publication Analysis

Top Keywords

dental ceramic
16
cyclic fatigue
12
ceramic specimens
12
fatigue tests
8
scoping review
8
testing parameters
8
non-anatomic dental
8
accelerated fatigue
8
stainless steel
8
load applicator
8

Similar Publications

To assess the biomechanical behaviors of endodontically treated molars (ETMs) restored with endocrowns composed of different materials, forty mandibular molars were assigned to five groups (n = 8 each). Untreated molars constituted the control group (group C); the rest of the teeth that underwent root canal therapy were restored with endocrowns composed of polycrystalline ceramics (ST zirconia, UPCERA) in group ZR, lithium disilicate glass ceramics (UP.CAD, UPCERA) in group LD, resin-based nanoceramics (Hyramic, UPCERA) in group NC, and feldspathic ceramics (CEREC Blocs, Sirona) in group FC.

View Article and Find Full Text PDF

Adolescence is defined as a population ranging from ten to nineteen years old. Permanent teeth in adolescents are of critical significance as they are actively involved in mastication, contribute to aesthetic appearance, play a role in pronunciation, and are integral to the growth and development of the stomatognathic system. Specifically, permanent teeth in adolescents comprise those with incomplete root development and those with complete root development but unstable gingival margin positions.

View Article and Find Full Text PDF

Introduction: The primary objective of any implant system is to achieve firm fixation to the bone, which can be influenced by both biomechanical factors and biomaterial selection. An array of materials is used for the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants.

View Article and Find Full Text PDF

Background: The growing demand for esthetic restorative materials highlights the need to evaluate their marginal accuracy and fracture resistance to ensure optimal clinical outcomes for primary molars.

Aim: The aim was to assess the vertical marginal gap distance and fracture resistance of esthetic restorative materials after cyclic loading.

Design: Forty extracted primary molars were randomly divided into four groups: Group I, stainless steel veneered crowns with tooth-colored material; Group II, prefabricated monolithic zirconia crowns; Group III, yttria-partially stabilized zirconia computer-aided design/computer-aided manufacturing (CAD/CAM) crowns; and Group IV, hybrid ceramic CAD/CAM crowns.

View Article and Find Full Text PDF

Objective: The use of vertical margin design in all-ceramic restoration has generated inquiries regarding its clinical efficacy under diverse dynamic oral conditions. This research aims to assess the marginal fit and fracture resistance of monolithic zirconia crowns featuring vertical margin design as opposed to those with conventional horizontal margin design.

Materials And Methods: Two metal dies were employed to generate replicated resin dies mimicking mandibular first molar preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!