Background: Chronic obstructive pulmonary disease (COPD) hospitalization has been linked with ambient air pollution. However, the evidence on respiratory health benefits from air pollution control policy in China is limited.
Objective: To investigate benefits from the Three-Year Action Plan to Win the Battle for a Blue Sky (TYAP) for tackling COPD hospitalization due to ambient air pollution.
Methods: We conducted a time-stratified case-crossover study of 138,015 COPD hospitalizations aged ≥ 60 years in Guangdong province, China during 2016-2019 to investigate respiratory health benefits from TYAP. Inverse distance weighting method was used to assess daily individual-level exposures to ambient air pollutants including particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM), particulate matter with an aerodynamic diameter ≤ 10 µm (PM), sulfur dioxide (SO), nitrogen dioxide (NO), carbon monoxide (CO), and ozone (O). Conditional logistic regression model was applied to analyze the associations between ambient air pollutants and COPD hospitalization.
Results: TYAP can modify the associations. Each 10 μg/m increase of exposure to PM, PM, and NO and 1 mg/m increase of exposure to CO were significantly associated with 2.5%, 2.0%, 3.0%, and 14.4% increase in odds of COPD hospitalization before TYAP, respectively; while 1.0%, 0.9%, 1.5%, and 5.8% increase in odds during TYAP. We found prominent declines in health burden of COPD hospitalizations due to air pollution among the elderly after TYAP implication when compared with that before TYAP.
Conclusion: Reduced levels of ambient air pollutants by TYAP can effectively lower the risk for COPD hospitalization among the elderly, which provides evidence on the respiratory health benefits from consistent and effective air pollution control policy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2021.113034 | DOI Listing |
Sci Rep
January 2025
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
The rapid development of low-cost sensors provides the opportunity to greatly advance the scope and extent of monitoring of indoor air pollution. In this study, calibrated particle matter (PM) sensors and a non-negative matrix factorisation (NMF) source apportionment technique are used to investigate PM concentrations and source contributions across three households in an urban residential area. The NMF is applied to combined data from all houses to generate source profiles that can be used to understand how PM source characteristics are similar or differ between different households in the same urban area.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, 100069, China; School of Medical Sciences and Health, Edith Cowan University, WA6027, Perth, Australia. Electronic address:
Existing researches had primarily investigated the associations between various air pollutants and the risk of coronary heart disease (CHD) or diabetes mellitus (DM) separately. However, the significance and effects of PM and its components in patients with CHD and comorbid DM (CHD-DM) remain unclear. Patient data was sourced from the Beijing Municipal Health Commission Information Centre between January 1, 2014, and December 31, 2018.
View Article and Find Full Text PDFPLoS One
January 2025
C.E. Lynn College of Nursing, Florida Atlantic University, Boca Raton, FL, United States of America.
Background: Ambient air pollution, detrimental built and social environments, social isolation (SI), low socioeconomic status (SES), and rural (versus urban) residence have been associated with cognitive decline and risk of Alzheimer's disease and related dementias (ADRD). Research is needed to investigate the influence of ambient air pollution and built and social environments on SI and cognitive decline among rural, disadvantaged, ethnic minority communities. To address this gap, this cohort study will recruit an ethnoracially diverse, rural Florida sample in geographic proximity to seasonal agricultural burning.
View Article and Find Full Text PDFBiological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
WEISS Centre, University College London, UK.
Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.
Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!