The natural tripeptide glutathione (GSH) is a ubiquitous compound harboring various biological tasks, among them interacting with essential and toxic metal ions. Yet, although weakly binding the poisonous metal lead (Pb), GSH poorly detoxifies it. β-Mercaptoaspartic acid is a new-to-nature novel amino acid that was found to enhance the Pb-detoxification capability of a synthetic cyclic tetrapeptide. Aiming to explore the advantages of noncanonical amino acids (ncAAs) of this nature, we studied the detoxification capabilities of GSH and three analogue peptides, each of which contains at least one ncAA that harbors both free carboxylate and thiolate groups. A thorough investigation that includes detoxification and mechanistic evaluations, metal-binding affinity, metal selectivity, and computational studies shows that these ncAAs are highly beneficial in additively enhancing Pb binding and reveals the importance of both high affinity and metal selectivity in synergistically reducing Pb toxicity in cells. Hence, such ncAAs join the chemical toolbox against Pb poisoning and pollution, enabling peptides to strongly and selectively bind the toxic metal ion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c03030DOI Listing

Publication Analysis

Top Keywords

toxic metal
8
affinity metal
8
metal selectivity
8
metal
5
thiolation carboxylation
4
carboxylation glutathione
4
glutathione synergistically
4
synergistically enhance
4
enhance lead-detoxification
4
lead-detoxification capabilities
4

Similar Publications

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.

View Article and Find Full Text PDF

Proteomic Profile of in Response to Heavy Metal Pollution in Lakes of Northern Patagonia.

Int J Mol Sci

January 2025

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.

Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!