High Proton Conduction in Three Highly Water-Stable Hydrogen-Bonded Ferrocene-Based Phenyl Carboxylate Frameworks.

Inorg Chem

College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001 Henan, P. R. China.

Published: December 2021

To acquire more new crystalline proton conductive materials, three ferrocene-based phenyl carboxylate frameworks (FCFs), [FcCO(-CHCOOH)] (FCF ) (Fc = (η-CH)Fe(η-CH)), [-FcCHCOOH] (FCF ), and [-FcCHCOOH] (FCF ), supported by hydrogen bonds and π···π interactions were prepared. Their structures and phase purities are clarified by single-crystal X-ray diffraction or powder X-ray diffraction (PXRD). In addition, their high thermal and water stability were confirmed by thermogravimetric analyses, PXRD, and scanning electron microscopy determinations. Proton conductivity (σ) of - was studied under different relative humidities (RHs) and temperatures, and it was found that their σ boosted with the increase of humidity and temperature. Under 100 °C and 98% RH, their optimal σ values are 0.77 × 10, 1.94 × 10, and 3.46 × 10 S·cm, respectively. Consequently, their proton conductive mechanisms were proposed by means of activation energy calculation and structural analysis. Note that they are good proton conductive materials and are expected to be used in proton exchange membrane fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c03093DOI Listing

Publication Analysis

Top Keywords

proton conductive
12
ferrocene-based phenyl
8
phenyl carboxylate
8
carboxylate frameworks
8
conductive materials
8
[-fcchcooh] fcf
8
x-ray diffraction
8
proton
5
high proton
4
proton conduction
4

Similar Publications

Computational insights into the redox properties and electronic structures of [Tc=O] complexes: Implications for Tc-radiopharmaceuticals.

J Mol Graph Model

January 2025

"VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia.

Technetium-99m plays a pivotal role in nuclear medicine, offering unique IMAGING capabilities due to its favorable physical and chemical properties. This study investigates the redox behavior and electronic structures of three representative Tc(V) oxo complexes, [TcO(HMPAO)], [TcO(Bicisate)], and [TcO(DMSA)], using computational techniques. Employing relativistic density functional theory with the Zero-Order Regular Approximation (ZORA), we analyze singlet-triplet energy gaps, Gibbs free energy changes, and redox potentials in neutral and acidic environments.

View Article and Find Full Text PDF

Background: Tegoprazan (TPZ), a potassium-competitive acid blocker with potent gastric acid-suppressing activity, may be a potential agent for treating Helicobacter pylori infection. The study aimed to evaluate the efficacy of TPZ-based therapy for H. pylori eradication compared with proton pump inhibitor (PPI)-based therapy.

View Article and Find Full Text PDF

Highly active antiretroviral therapy has led to a significant increase in the life expectancy of people living with HIV. The trade-off is that HIV-infected patients often suffer from comorbidities that require additional treatment, increasing the risk of Drug-Drug Interactions (DDIs), the clinical relevance of which has often not been determined during registration trials of the drugs involved. Therefore, it is important to identify potential clinically relevant DDIs in order to establish the most appropriate therapeutic approaches.

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Cholesterol Attenuates the Pore-Forming Capacity of CARC-Containing Amphipathic Peptides.

Int J Mol Sci

January 2025

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia.

Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!