Spatial Correlation between Fluctuating and Static Fields over Metal and Dielectric Substrates.

Phys Rev Lett

Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland.

Published: November 2021

We report spatially resolved measurements of static and fluctuating electric fields over conductive (Au) and nonconductive (SiO_{2}) surfaces. Using an ultrasensitive "nanoladder" cantilever probe to scan over these surfaces at distances of a few tens of nanometers, we record changes in the probe resonance frequency and damping that we associate with static and fluctuating fields, respectively. We find static and fluctuating fields to be spatially correlated. Furthermore, the fields are of similar magnitude for the two materials. We quantitatively describe the observed effects on the basis of trapped surface charges and dielectric fluctuations in an adsorbate layer. Our results are consistent with organic adsorbates significantly contributing to surface dissipation that affects nanomechanical sensors, trapped ions, superconducting resonators, and color centers in diamond.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.216101DOI Listing

Publication Analysis

Top Keywords

static fluctuating
12
fluctuating fields
8
fields
5
spatial correlation
4
fluctuating
4
correlation fluctuating
4
static
4
fluctuating static
4
static fields
4
fields metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!