Hybridization of Bogoliubov quasiparticles (BQPs) between the CuO_{2} layers in the triple-layer cuprate high-temperature superconductor Bi_{2}Sr_{2}Cu_{2}Cu_{3}O_{10+δ} is studied by angle-resolved photoemission spectroscopy (ARPES). In the superconducting state, an anticrossing gap opens between the outer- and inner-BQP bands, which we attribute primarily to interlayer single-particle hopping with possible contributions from interlayer Cooper pairing. We find that the d-wave superconducting gap of both BQP bands smoothly develops with momentum without an abrupt jump in contrast to a previous ARPES study. Hybridization between the BQPs also gradually increases in going from the off nodal to the antinodal region, which is explained by the momentum dependence of the interlayer single-particle hopping. As possible mechanisms for the enhancement of the superconducting transition temperature, the hybridization between the BQPs as well as the combination of phonon modes of the triple CuO_{2} layers and spin fluctuations represented by a four-well model are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.217004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!