Van der Waals (vdW) heterojunctions, based on two-dimensional (2D) materials, have great potential for the development of ecofriendly and high-efficiency nanodevices, which shows valuable applications as photovoltaic cells, photodetectors, etc. However, the coexistence of photoelectric conversion and storage in a single device has not been achieved until now. Here, we demonstrate a simple strategy to construct a vdW p-n junction between a WSe_{2} layer and quasi-2D electron gas. After an optical illumination, the device stores the light-generated carriers for up to seven days, and then releases a very large photocurrent of 2.9 mA with bias voltage applied in darkness; this is referred to as chargeable photoconductivity (CPC), which completely differs from any previously observed photoelectric phenomenon. In normal photoconductivity, the recombination of electron-hole pairs occurs at the end of their lifetime; in contrast, infinite-lifetime photocarriers can be generated and stored in CPC devices without recombination. The photoelectric conversion and storage are completely self-excited during the charging process. The ratio between currents in full- and empty-photocarrier states below the critical temperature reaches as high as 10^{9}, with an external quantum efficiency of 93.8% during optical charging. A theoretical model developed to explain the mechanism of this effect is in good agreement with the experimental data. This work paves a path toward the high-efficiency devices for photoelectric conversion and storage.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.217401DOI Listing

Publication Analysis

Top Keywords

photoelectric conversion
16
conversion storage
16
coexistence photoelectric
8
van der
8
der waals
8
conversion
4
storage
4
storage van
4
waals heterojunctions
4
heterojunctions van
4

Similar Publications

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O Batteries.

Nanomaterials (Basel)

December 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.

View Article and Find Full Text PDF

Atmospheric Pressure Alkaline Etching of MFI Zeolite Under Mild Temperature Toward Hollow Microstructure and Ultralow k Film.

Small Methods

December 2024

Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China.

Constructing a hollow structure inside zeolite is very helpful for improving its performance. Unlike the conventional alkaline etching technique usually operated at high temperature (typically 170 °C) and high pressure (autogenerated in autoclave), here, it is discovered that zeolite MFI nano-box can be achieved under mild etching conditions of atmospheric pressure and low temperature of 80 °C, making it very attractive for energy conservation and practical applications. A hollow-structure formation mechanism of protection-dissolution etching is demonstrated by characterizing MFI crystals obtained under different etching time, temperature, and etchant concentration.

View Article and Find Full Text PDF

Successive Reactions of Trimethylgermanium Chloride to Achieve > 26% Efficiency MA-Free Perovskite Solar Cell With 3000-Hour Unattenuated Operation.

Adv Mater

December 2024

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.

View Article and Find Full Text PDF

Boosting the Phosphate Adsorption of Calcite by Low Mg-Doping.

Environ Res

December 2024

College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China. Electronic address:

Calcite is a promising material choice for adsorbing phosphates because of its abundance and environmentally benign nature. However, the slow adsorption kinetics and hence low adsorption capacity within a short time frame hinders its practical application. In this work, we solve these problems by presenting a low Mg-doped calcite adsorbent, Mg-10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!