We show that combining randomized measurement protocols with importance sampling allows for characterizing entanglement in significantly larger quantum systems and in a more efficient way than in previous work. A drastic reduction of statistical errors is obtained using classical techniques of machine learning and tensor networks using partial information on the quantum state. In current experimental settings of engineered many-body quantum systems this significantly increases the (sub-)system sizes for which entanglement can be measured. In particular, we show an exponential reduction of the required number of measurements to estimate the purity of product states and GHZ states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.200503 | DOI Listing |
Nanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.
View Article and Find Full Text PDFInt J Med Robot
February 2025
Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Background: The emergence of telesurgery has received global interest, with secure network transmission identified as a crucial determinant of its success. This study aimed to evaluate the safety and viability of employing quantum cryptography communication in remote partial nephrectomy.
Methods: The surgeon operated on the patient from a distance of over 260 km using remote control of a surgical robot.
Natl Sci Rev
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Beijing Computational Science Research Center, Beijing 100193, China.
The physical process in the macroscopic world unfolds along a single time direction, while the evolution of a quantum system is reversible in principle. How to recover a quantum system to its past state is a complex issue of both fundamental and practical interests. In this article, we experimentally demonstrate a novel method for recovering the state in quantum walks (QWs), also known as full-state revival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!