A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cancer-Erythrocyte Hybrid Membrane-Camouflaged Magnetic Nanoparticles with Enhanced Photothermal-Immunotherapy for Ovarian Cancer. | LitMetric

Cell-membrane-coated nanoparticles are widely studied due to their inherent cellular properties, such as immune escape and homologous homing. A cell membrane coating can also maintain the relative stability of nanoparticles during circulation in a complex blood environment through cell membrane encapsulation technology. In this study, we fused a murine-derived ID8 ovarian cancer cell membrane with a red blood cell (RBC) membrane to create a hybrid biomimetic coating (IRM), and hybrid IRM camouflaged indocyanine green (ICG)-loaded magnetic nanoparticles (FeO-ICG@IRM) were fabricated for combination therapy of ovarian cancer. FeO-ICG@IRM retained both ID8 and RBC cell membrane proteins and exhibited highly specific self-recognition of ID8 cells and as well as a prolonged circulation lifetime in blood. Interestingly, in the bilateral flank tumor model, the IRM-coated nanoparticles also activated specific immunity, which killed homologous ID8 tumor cells but had no effect on B16-F10 tumor cells. Furthermore, FeO-ICG@IRM showed synergistic photothermal therapy, resulting in the release of whole-cell tumor antigens by photothermal-induced tumor necrosis, which further enhanced antitumor immunotherapy for primary tumor and metastatic tumor by activating CD8 cytotoxic T cells and reducing regulatory Foxp3 T cells. Together, the biomimetic FeO-ICG@IRM nanoparticles showed synergistic photothermal-immunotherapy for ovarian cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c07180DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
16
cell membrane
16
magnetic nanoparticles
8
photothermal-immunotherapy ovarian
8
tumor cells
8
tumor
7
nanoparticles
6
cell
5
membrane
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!