Vanillin, as a lignin-derived mono-aromatic compound, has attracted increasing attention due to its special role as an intermediate for the synthesis of different biobased polymers. Herein, intrinsically flame-retardant and thermal-conductive vanillin-based epoxy/graphene aerogel (GA) composites were designed. First, a bifunctional phenol intermediate (DN-bp) was synthesized by coupling vanillin with 4, 4'-diaminodiphenylmethane and DOPO, and the epoxy monomer (MEP) was obtained by the epoxidation reaction with DN-bp and epichlorohydrin. Then, various amounts of MEP and diglycidyl ether of bisphenol A (DER) were mixed and cured. Interestingly, the flexural strength and modulus were greatly enhanced from 72.8 MPa and 1.3 GPa to 90.3 MPa and 2.8 GPa, respectively, at 30 wt % MEP, due to the rigidity of MEP and strong intermolecular N-H hydrogen bonding interactions. Meanwhile, the cured epoxy achieved a UL-94 V0 rating with a low P content of 1.06%. The flame-retardant vanillin-based epoxy was then impregnated into the thermal conductive 3D GA networks. The obtained epoxy/graphene composite showed excellent flame retardancy and thermal conductivity [λ = 0.592 W/(m·K)] with only 0.5 wt % graphene in the system. Based on these results, we believe that this work would represent a novel solution for the preparation of high-performance biobased flame-retardant multipurpose epoxies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c19727 | DOI Listing |
Adv Sci (Weinh)
December 2024
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Key Laboratory of Lightweight Composite, Shanghai Engineering Research Center of Nano Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China.
Flammability is a significant challenge in polymer-based electronics. In this regard, triboelectric nanogenerators (TENGs) have enabled a safe means for harvesting mechanical energy for conversion into electrical energy. However, most existing polymers used for TENGs are sourced from petroleum-based raw materials and are highly flammable, which can further accelerate the spread of fire and harm the ecological environment.
View Article and Find Full Text PDFACS Nano
December 2024
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, P. R. China.
Polymer aerogels, with their porous and lightweight features, excel in applications such as energy storage, absorption, and thermal insulation, making them a sought-after new material. However, the covalent cross-linking networks of current polymer aerogels result in unsustainable manufacturing and processing practices, persistently depleting our finite natural resources and causing significant global environmental impacts. Herein, we have constructed a high-performance dynamic covalent cross-linking aerogel network using biobased materials, with its structure and green sustainability akin to those of plants in nature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
Int J Biol Macromol
December 2024
Zhejiang Carolina Textile Co. LTD, Quzhou 324299, China.
Polyamide 66 (PA66) fabric, one of the most common textile materials, presents great fire hazards to human safety and property due to its intrinsic flammability. In this study, fully biobased intumescent flame-retardants (IFRs) composed of cellulose nanocrystals (CNC), tannic acid (TA) and phytic acid (PA) were synthesized and coated onto the surface of the PA66 fabric for improving the flame retardancy, antibacterial and UV resistance. It is found that IFR coating effectively suppressed the droplet and smoke phenomenon of PA66 fabric, and the total smoke production (TSP) and smoke production rate (SPR) values of the fabric were significantly reduced by 71.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China. Electronic address:
Nanocellulose, a biomass resource known for its abundance, renewability, environmental friendliness, and nanoscale size, has garnered significant interest from researchers. However, it is a type of carbohydrate that burns very easily, which limits its applications, especially in areas where good thermal stability and low flammability are requested. In this study, phosphorylated cellulose fibers (P-CF) was prepared via ternary choline chloride/urea/ phosphorous acid reactive deep eutectic solvent (RDES) pretreatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!