Objective: To revise the existing criteria to improve the definition of chronic colitis stages in inflammatory bowel diseases (IBDs).
Material And Methods: A total of 100 cases of IBDs (ulcerative colitis (=70) and Crohn's disease (=30) diagnosed in 2017 to 2019 were examined. Thirty patients with colitis were selected for a comparison group, who were assigned to an infective colitis group or a drug-induced colitis one at the final diagnosis.
Results: The sequence of chronic colitis stages was defined from Stage 1 (early changes) to Stage 3, which are characterized by progressive mucosal structural rearrangement. Mainly at Stage 3 that characterizes the final stage of structural rearrangement in the mucous membrane, where dysplastic changes (the onset of tumor transformation) are detected.
Conclusion: For the diagnosis of chronic colitis in IBD, it is mandatory to detect mucosal structural rearrangement. Stages 1 and 2 are characterized by early structural changes in the mucous membrane, whereas the process becomes irreversible at Stage 3. The identification of colitis stages is of diagnostic and, undoubtedly, prognostic value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17116/patol20218306114 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.
View Article and Find Full Text PDFJ Chem Phys
January 2025
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
Identifying the diverse roles of disorderly packed atoms inside an amorphous solid has been a highly pursued but daunting task in glass physics. By analyzing the full-frequency vibrational modes of a model Cu50Zr50 glass, here, we classify the internal atoms into low-, subhigh-, and high-frequency ones that have different tendencies for rearrangements upon excitations. We find that low-frequency atoms are structurally unfavored and tend to aggregate.
View Article and Find Full Text PDFZool Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( ), a species distinguished by the vibrant plumage of males.
View Article and Find Full Text PDFNat Phys
November 2024
Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland.
A dynamical rearrangement in the electronic structure of a molecule can be driven by different phenomena, including nuclear motion, electronic coherence or electron correlation. Recording such electronic dynamics and identifying its fate in an aqueous solution has remained a challenge. Here, we reveal the electronic dynamics induced by electronic relaxation through conical intersections in both isolated and solvated pyrazine molecules using X-ray spectroscopy.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
Background: The common occurrence of atrial fibrillation (AF) as a cardiac arrhythmia, along with its link to sleep deprivation (SD), is gaining more acknowledgment. Even with progress in comprehending the development of AF, the molecular connections between SD and AF are still not well-defined. The objective of this research was to pinpoint the shared molecular routes responsible for SD-induced AF and investigate possible treatment targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!