Sodium-ion batteries (NIBs) utilize cheaper materials than lithium-ion batteries (LIBs) and can thus be used in larger scale applications. The preferred anode material is hard carbon, because sodium cannot be inserted into graphite. We apply experimental entropy profiling (EP), where the cell temperature is changed under open circuit conditions. EP has been used to characterize LIBs; here, we demonstrate the first application of EP to any NIB material. The voltage versus sodiation fraction curves (voltage profiles) of hard carbon lack clear features, consisting only of a slope and a plateau, making it difficult to clarify the structural features of hard carbon that could optimize cell performance. We find additional features through EP that are masked in the voltage profiles. We fit lattice gas models of hard carbon sodiation to experimental EP and system enthalpy, obtaining: 1. a theoretical maximum capacity, 2. interlayer versus pore filled sodium with state of charge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202100748 | DOI Listing |
RSC Adv
January 2025
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
Herbal dust, a waste byproduct from filter-tea production, was annealed to form ash that can be incorporated into natural rubber as an eco-friendly filler. Three types of herbal dust ash (HDA), green tea, hibiscus, and lemon balm, were added at two different contents, 2.5 and 5 phr, into the rubber compound, while the content of carbon black, as a filler, was maintained at 50 phr in all samples.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, 89081 Ulm, Germany.
Potassium-ion batteries (KIBs) have attracted significant attention in recent years as a result of the urgent necessity to develop sustainable, low-cost batteries based on non-critical raw materials that are competitive with market-available lithium-ion batteries. KIBs are excellent candidates, as they offer the possibility of providing high power and energy densities due to their faster K diffusion and very close reduction potential compared with Li/Li. However, research on KIBs is still in its infancy, and hence, more investigation is required both at the materials level and at the device level.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Material Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China.
W-Mo-V high-speed steel (HSS) is a high-alloy high-carbon steel with a high content of carbon, tungsten, chromium, molybdenum, and vanadium components. This type of high-speed steel has excellent red hardness, wear resistance, and corrosion resistance. In this study, the alloying element ratios were adjusted based on commercial HSS powders.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan.
This study examines the influence of nanofillers on the ultraviolet (UV) penetration depth of photopolymer resins used in stereolithography (SLA) 3D printing, and their impact on printability. Three nanofillers, multiwalled carbon nanotubes (MWCNT), graphene nanoplatelets (xGNP), and boron nitride nanoparticles (BNNP), were incorporated into a commercially available photopolymer resin to prepare nanocomposite formulations. The UV penetration depth (Dp) was assessed using the Windowpane method, revealing a significant reduction with the addition of nanofillers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!