A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insight on molecular pathogenesis and pharmacochaperoning potential in phosphomannomutase 2 deficiency, provided by novel human phosphomannomutase 2 structures. | LitMetric

Phosphomannomutase 2 (PMM2) deficiency, the most frequent congenital disorder of glycosylation (PMM2-CDG), is a severe condition, which has no cure. Due to the identification of destabilizing mutations, our group aims at increasing residual activity in PMM2-CDG patients, searching for pharmacochaperones. Detailed structural knowledge of hPMM2 might help identify variants amenable to pharmacochaperoning. hPMM2 structural information is limited to one incomplete structure deposited in the Protein Databank without associated publication, which lacked ligands and residues from a crucial loop. Here we report five complete crystal structures of hPMM2, three for wild-type and two for the p.Thr237Met variant frequently found among Spanish PMM2-CDG patients, free and bound to the essential activator glucose-1,6-bisphosphate (Glc-1,6-P ). In the hPMM2 homodimer, each subunit has a different conformation, reflecting movement of the distal core domain relative to the dimerization cap domain, supporting an opening/closing process during catalysis. Two Mg ions bind to the core domain, one catalytic and one structural. In the cap domain, the site for Glc-1,6-P is well delineated, while a Cl ion binding at the intersubunit interface is predicted to strengthen dimerization. Patient-found amino acid substitutions are nonhomogeneously distributed throughout hPMM2, reflecting differential functional or structural importance for various parts of the protein. We classify 93 of 101 patient-reported single amino acid variants according to five potential pathogenetic mechanism affecting folding of the core and cap domains, linker 2 flexibility, dimerization, activator binding, and catalysis. We propose that ~80% and ~50% of the respective core and cap domains substitutions are potential candidates for pharmacochaperoning treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jimd.12461DOI Listing

Publication Analysis

Top Keywords

pmm2-cdg patients
8
core domain
8
cap domain
8
amino acid
8
core cap
8
cap domains
8
hpmm2
5
insight molecular
4
molecular pathogenesis
4
pathogenesis pharmacochaperoning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!