The intraluminal thrombus (ILT) has been shown to negatively impact the progression of the abdominal aortic aneurysms (AAAs). The formation of this thrombus layer has been connected to the local flow environment within AAAs, but the specific mechanisms leading to thrombus formation are still not fully understood. Our study investigated the association between vortical structures, near-wall hemodynamic metrics (e.g., time averaged wall shear stress (TAWSS) and oscillatory shear index (OSI)), and ILT accumulation in a longitudinal cohort of 14 AAAs (53 scans total). Vortices and hemodynamic parameters were estimated using hemodynamic simulations performed to each scan of each patient and compared to local 3D changes of ILT thickness between two consecutive scans (ΔILT). Results showed that vortices formed and remained strong and close to the lumen surface in AAAs without an ILT, while in AAAs with ILTs these detached from the lumen surface and dissipated nearby wall region where an increase in ILT thickness was observed. Although low TAWSS was observed in regions with and without ILT accumulation, an inverse correlation between and TAWSS was observed within the regions that experienced a thrombus growth. Our results support the idea that vortical structures might be playing a role modulating ILT accumulation into specific wall regions. Also, it submits the idea that the low TAWSS will be modulating the growth of thrombus within these preferred ILT accumulated regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858872 | PMC |
http://dx.doi.org/10.1002/cnm.3555 | DOI Listing |
Sci Data
January 2025
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA.
The Imaging Science Subsystem onboard the Cassini spacecraft recorded numerous high-quality images of Jupiter and Saturn at various wavelengths, from ultraviolet to near-infrared, during its 20-year mission from 1997 to 2017. Using these images, we have developed global maps of Jupiter and Saturn across multiple wavelengths. These maps reveal the global atmospheric structures of Jupiter and Saturn, offering a comprehensive tool to study the physical and dynamic processes of these atmospheric systems on a global scale.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhonghuancun, Haidian District, Beijing 100081, Beijing, 100081, CHINA.
The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, owing to a lack of real bird flight data, in-depth studies on the aerodynamic properties of these coupled motions remain scarce.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFACS Nano
January 2025
Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.
View Article and Find Full Text PDFISME J
January 2025
Center for Fundamental and Applied Microbiomics, Biodesign Institue, Arizona State University, Tempe, AZ 85287.
The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!