Brain stimulation has become one of the most acceptable therapeutic approaches in recent years and a powerful tool in the remedy against neurological diseases. Brain stimulation is achieved through the application of electric currents using non-invasive as well as invasive techniques. Recent technological advancements have evolved into the development of precise devices with capacity to produce well-controlled and effective brain stimulation. Currently, most used non-invasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In last decade, application of these brain stimulation techniques has not only exploded but also expanded to wide variety of neurological disorders. Therefore, in the current review, we will provide an overview of the potential of both non-invasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques in the treatment of such brain diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8673710PMC
http://dx.doi.org/10.1111/cns.13769DOI Listing

Publication Analysis

Top Keywords

brain stimulation
28
brain
8
neurological disorders
8
stimulation
8
stimulation techniques
8
stimulation therapeutic
4
therapeutic approach
4
approach treatment
4
treatment neurological
4
disorders brain
4

Similar Publications

Purpose: Investigations on identifying the nature of stuttering present varying views. The argument remains whether the stuttering dysfluencies have a motor or a linguistic foundation. Though stuttering is considered a speech-motor disorder, linguistic factors are increasingly reported to play a role in stuttering.

View Article and Find Full Text PDF

The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.

View Article and Find Full Text PDF

When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval.

View Article and Find Full Text PDF

"Tardive syndrome" is an umbrella term for a group of drug-induced movement disorders associated with the prolonged use of mainly dopamine receptor blockers and also other medications. Early recognition followed by gradual withdrawal of the incriminating drug may lead to reversal, although not in all patients. Tardive syndromes are usually mixed movement disorders, with specific phenotypes, which may lead to severe disability.

View Article and Find Full Text PDF

Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!