Probes for Fluorescent Visualization of Specific Cellular Organelles.

Methods Mol Biol

Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.

Published: January 2022

The defining characteristic of eukaryotic cells is the segregation of critical cellular functions within various membrane bound cellular organelles, including the nucleus, endoplasmic reticulum, Golgi apparatus, lysosomes, and mitochondria. Cell biologists therefore have extensively utilized organelle specific counterstains to help identify the localization of specific proteins or other targets of interest in order to garner an understanding of either their potential functions or their effects on the cell. There currently is a wide array of fluorescent dyes and reagents that can be utilized in live and fixed cells to identify organelles, thereby creating challenges in both choosing between the plethora of options and optimizing their use. Here we present a discussion of commonly utilized commercially available organelle dyes and summarize the factors that influence selection of the various dyes for: a given organelle; live versus fixed cellular conditions; adaptation to a specific protocol; spectral multiplexing; or matching excitation/emission spectra to available imaging equipment. Also presented are recommended protocols for a typical example reagent that can be reliably utilized to visualize its target cellular organelle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1948-3_7DOI Listing

Publication Analysis

Top Keywords

cellular organelles
8
cellular
5
probes fluorescent
4
fluorescent visualization
4
specific
4
visualization specific
4
specific cellular
4
organelles defining
4
defining characteristic
4
characteristic eukaryotic
4

Similar Publications

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart.

View Article and Find Full Text PDF

Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery.

View Article and Find Full Text PDF

Electron Tomography of Organelles and Vesicles in the Investigation of SNARE Function and Localization.

Methods Mol Biol

January 2025

Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, Cambridge, UK.

Electron tomography can provide additional morphological information not easily obtained by conventional transmission electron microscopy of thin sections. It uses a goniometer stage in the electron microscope to tilt the specimen and collect a series of 2D images from different orientations, which are combined to provide a 3D volume tomogram and a colored reconstruction of the morphological feature(s) of interest. Here we describe the protocols for its use in visualizing changes in organelle morphology after depletion of the SNARE proteins VAMP7 and VAMP8 and to study VAMP7 localization on endolysosomes/lysosomes.

View Article and Find Full Text PDF

Fluorescence recovery after photobleaching (FRAP) can be employed to investigate membrane lipid mixing of vacuoles in live budding yeast cells and distinguish the fused, hemi-fused or non-fused states of these organelles under physiological conditions. Here, we describe a protocol for labeling the outer and inner leaflets of vacuoles in live cells that allow to detect hemifusion intermediates and, thus, identify components necessary for fusion pore opening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!