A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbIBr Solar Cells. | LitMetric

Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbIBr Solar Cells.

Nanomicro Lett

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.

Published: December 2021

The application of ionic liquids in perovskite has attracted wide-spread attention for its astounding performance improvement of perovskite solar cells (PSCs). However, the detailed mechanisms behind the improvement remain mysterious. Herein, a series of imidazolium-based ionic liquids (IILs) with different cations and anions is systematically investigated to elucidate the passivation mechanism of IILs on inorganic perovskites. It is found that IILs display the following advantages: (1) They form ionic bonds with Cs and Pb cations on the surface and at the grain boundaries of perovskite films, which could effectively heal/reduce the Cs/I vacancies and Pb-related defects; (2) They serve as a bridge between the perovskite and the hole-transport-layer for effective charge extraction and transfer; and (3) They increase the hydrophobicity of the perovskite surface to further improve the stability of the CsPbIBr PSCs. The combination of the above effects results in suppressed non-radiative recombination loss in CsPbIBr PSCs and an impressive power conversion efficiency of 17.02%. Additionally, the CsPbIBr PSCs with IILs surface modification exhibited improved ambient and light illumination stability. Our results provide guidance for an in-depth understanding of the passivation mechanism of IILs in inorganic perovskites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639893PMC
http://dx.doi.org/10.1007/s40820-021-00763-8DOI Listing

Publication Analysis

Top Keywords

passivation mechanism
12
ionic liquids
12
cspbibr pscs
12
imidazolium-based ionic
8
solar cells
8
mechanism iils
8
iils inorganic
8
inorganic perovskites
8
perovskite
6
iils
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!