ERBB3 as a therapeutic target in glioblastoma: overexpression can make the difference.

Mol Cell Oncol

Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.

Published: October 2021

By exploiting an integrated experimental platform based on patient-derived cancer stem cells, we identified a glioblastoma subset characterized by inheritable Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3) overexpression, metabolic dependency on ERBB3 signaling, and liability to ERBB3 targeting. We provide insights on why some glioblastomas may rely on ERBB3 and how to recognize them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632286PMC
http://dx.doi.org/10.1080/23723556.2021.1990677DOI Listing

Publication Analysis

Top Keywords

erbb3
5
erbb3 therapeutic
4
therapeutic target
4
target glioblastoma
4
glioblastoma overexpression
4
overexpression difference
4
difference exploiting
4
exploiting integrated
4
integrated experimental
4
experimental platform
4

Similar Publications

Background: HER2-positive breast cancer (BC) is a subtype of breast cancer. Increased ERBB3 expression has been implicated as a potential cause of resistance to other HER-targeted therapies. Our study aimed to screen and validate prognostic markers associated with ERBB3 expression by bioinformatics and affecting the prognosis of HER2 staging.

View Article and Find Full Text PDF

The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.

View Article and Find Full Text PDF

Introduction: The treatment for patients with high-grade gliomas includes surgical resection of tumor, radiotherapy, and temozolomide chemotherapy. However, some patients do not respond to temozolomide due to a methylation reversal mechanism by the enzyme O-methylguanine-DNA-methyltransferase (MGMT). In patients receiving treatment with temozolomide, this biomarker has been used as a prognostic factor.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) drive metastasis, the leading cause of death in individuals with breast cancer. Due to their low abundance in the circulation, robust CTC expansion protocols are urgently needed to effectively study disease progression and therapy responses. Here we present the establishment of long-term CTC-derived organoids from female individuals with metastatic breast cancer.

View Article and Find Full Text PDF

ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!