Theoretically, with a high enough drug dosage, cancer cells could be eliminated. However, the dosages that can be administered are limited by the therapeutic efficacy and side effects of the given drug. Herein, a nanomedicine integrating chemotherapeutic sensitization and protection was developed to relieve the limitation of administration dosage and to improve the efficacy of chemotherapy. The nanomedicine was endowed with the function of synergistically controlled release of CO and drugs under near-infrared (NIR) light irradiation. CO photo-induced release system (COPIRS) was synthesized by constructing an electron excitation-electron transfer group-electron-induced CO release structure and was used as the hydrophobic part, and then hydrophilic polymer (polyethylene glycol; PEG) was introduced by a thermal-responsive groups (DA group), forming a near-infrared-induced burst-release nanocarrier. and experiments showed that the nanomedicine can distinguish between tumor and normal cells and regulates the resistance of these different cells through the controlled release of carbonic oxide (CO), simultaneously enhancing the efficacy of chemotherapy drugs on tumor cells and chemotherapeutic protection on normal cells. This strategy could solve the current limitations on dosages due to toxicity and provide a solution for tumor cure by chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631718 | PMC |
http://dx.doi.org/10.3389/fbioe.2021.773021 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
Life Metab
December 2024
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China.
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.
Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold.
View Article and Find Full Text PDFActa Biomater
January 2025
College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China. Electronic address:
Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!