Optical biosensing is being actively investigated for minimally-invasive monitoring of key biomarkers both and . However, typical benchtop instruments are not portable and are not well suited to high-throughput, real-time analysis. This paper presents a versatile multichannel instrument for measurement of emission intensity and lifetime values arising from luminescent biosensor materials. A detailed design description of the opto-electronic hardware as well as the control software is provided, elaborating a flexible, user-configurable system that may be customized or duplicated for a wide range of applications. This article presents experimental measurements that prove the and functionality of the system. Such tools may be adopted for many research and development purposes, including evaluation of new biosensor materials, and may also serve as prototypes for future miniaturized handheld or wearable devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635115 | PMC |
http://dx.doi.org/10.1109/access.2021.3098777 | DOI Listing |
We present, for the first time, to our knowledge, power splitters with multiple channel configurations in one-dimensional grating waveguides (1DGWs) that maintain crystal lattice-sensitive Bloch mode profiles without perturbation across all output channels, all within an ultra-miniaturized footprint of just 2.1 × 2.2 μm.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga City, Saga 840-8502, Japan.
This study introduces a novel method for fabricating multicavity, honeycomb-shaped collagen aerogels characterized by continuous pores. We have taken a unique approach to lyophilizing collagen hydrogels, which are UV-irradiated collagen solutions gelatinized in a carbonate buffer solution. The focus of this study was to investigate the effect of UV irradiation times on collagen solutions on collagen hydrogels and aerogels.
View Article and Find Full Text PDFACS Nano
January 2025
Electronic Information School, Wuhan University, Wuhan 430072, China.
Heading toward the next-generation intelligent optical device, the meta-optics active tunability is one of the most desirable properties to expand its versatility beyond the traditional optical devices. Despite its advances via various tunable approaches, the encoding freedom of tuning capability still critically restricts its widespread engagement and dynamics in real-life applications. Here, we present a gesture-interactive scheme by topography flexible metasurfaces (TFMs) to expand the encoding freedom for the tuning capability.
View Article and Find Full Text PDFMoiré metasurfaces exhibit high optical tuneabilities and versatile light manipulation capabilities. Both infinite quality factor (Q factor) and topological vortex configurations in momentum space (-space) of the bound state in the continuum (BIC) have introduced new dimensions for light modulation. Herein, we propose a moiré metasurface comprising two identical square photonic lattices superimposed with a commensurate angle of 12.
View Article and Find Full Text PDFHardwareX
June 2024
Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
Various applications require multi-channel high-voltage sources for their control, e.g. electrostatic adhesion, electrophoresis and artificial muscles such as piezoelectric, hydraulically amplified self-healing electrostatic(HASEL) and dielectric elastomer actuators(DEAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!