Flowering is central to the transformation of plants from vegetative growth to reproductive growth. The circadian clock system enables plants to sense the changes in the external environment and to modify the growth and development process at an appropriate time. (), which is controlled by the output signal of the circadian clock, has played an important role in the wheat "Green Revolution." In the current study, we systematically studied the relationship between haplotypes and both wheat yield- and quality-related traits, using genome-wide association analysis and transgenic strategies, and found that highly appropriate haplotypes had been selected in the wheat breeding programs. Genome-wide association analysis showed that is associated with significant differences in yield-related traits in wheat, including spike length (SL), heading date (HD), plant height (PH), and thousand-grain weight (TGW). A1 showed increased SL by 4.72-5.93%, whereas B1 and displayed earlier HD by 0.58-0.75 and 1.24-2.93%, respectively, decreased PH by 5.64-13.08 and 13.62-27.30%, respectively, and increased TGW by 4.89-10.94 and 11.12-21.45%, respectively. Furthermore, the constitutive expression of the gene in rice significantly delayed heading date and resulted in reduced plant height, thousand-grain weight, grain width (GW), and total protein content. With reference to 40years of data from Chinese wheat breeding, it was found that the appropriate haplotypes A1, -B1, and -D1 had all been subjected to directional selection, and that their distribution frequencies had increased from 26.09, 60.00, and 52.00% in landraces to 42.55, 93.62, and 96.23% in wheat cultivars developed in the 2010s. A methylation molecular marker was also developed to assist molecular wheat breeding. This research is of significance for fully exploring the function of the gene and its genetic resource diversity, to effectively use the most appropriate haplotypes and to improve crop yield and sustainability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631784 | PMC |
http://dx.doi.org/10.3389/fpls.2021.745411 | DOI Listing |
J Econ Entomol
January 2025
College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China.
Species distribution modeling is extensively used for predicting potential distributions of invasive species. However, an ensemble modeling approach has been less frequently used particularly pest species. The bird cherry-oat aphid Rhopalosiphum padi L.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China.
Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
Wheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.
Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.
Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!