Matrix stiffness, a critical physical property of the cellular environment, is implicated in epidermal homeostasis. In particular, matrix stiffening during the pathological progression of skin diseases appears to contribute to cellular responses of keratinocytes. However, it has not yet elucidated the molecular mechanism underlying matrix-stiffness-mediated signaling in coordination with chemical stimuli during inflammation and its effect on proinflammatory cytokine production. In this study, we demonstrated that keratinocytes adapt to matrix stiffening by increasing cell-matrix adhesion actin cytoskeleton remodeling. Specifically, mechanosensing and signal transduction are coupled with chemical stimuli to regulate cytokine production, and interleukin-6 (IL-6) production is elevated in keratinocytes on stiffer substrates in response to 2,4-dinitrochlorobenzene. We demonstrated that β1 integrin and focal adhesion kinase (FAK) expression were enhanced with increasing stiffness and activation of ERK and the PI3K/Akt pathway was involved in stiffening-mediated IL-6 production. Collectively, our results reveal the critical role of matrix stiffening in modulating the proinflammatory response of keratinocytes, with important clinical implications for skin diseases accompanied by pathological matrix stiffening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631934 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.759992 | DOI Listing |
Polymers (Basel)
January 2025
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.
A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or several anisometric filler particles surrounded by interface shells are considered.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo City 060-8543, Hokkaido, Japan.
Background/objectives: The objective of the present study was to examine the unidentified effects that RHO-associated coiled-coil-containing protein kinase 1 and 2 antagonists exert on the transforming growth factor beta2-induced epithelial-mesenchymal transition of the human corneal stroma.
Methods: In the presence or absence of pan-RHO-associated coiled-coil-containing protein kinase inhibitors, ripasudil or Y27632 and RHO-associated coiled-coil-containing protein kinase 2 inhibitor, KD025, we analyzed the following: (1) planar proliferation caused by trans-endothelial electrical resistance and the cellular metabolic characteristics of the two-dimensional cultures of human corneal stroma fibroblasts; (2) the physical properties of a three-dimensional human corneal stroma fibroblasts spheroid; and (3) the gene expressions and their regulators in the extracellular matrix, along with the tissue inhibitors of metalloproteinases and matrix metalloproteinases and the endoplasmic reticulum stress-related factors of the two-dimensional and three-dimensional cultures in human corneal stroma fibroblasts.
Results: Exposure to 5 nM of the transforming growth factor beta2 markedly increased the trans-endothelial electrical resistance values as well as the metabolic function in two-dimensional cultures of human corneal stroma fibroblasts.
Am J Physiol Cell Physiol
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.
View Article and Find Full Text PDFJCI Insight
December 2024
Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.
Fibrosis results from excessive extracellular matrix (ECM) deposition, causing tissue stiffening and organ dysfunction. Activated fibroblasts, central to fibrosis, exhibit increased migration, proliferation, contraction, and ECM production. However, it remains unclear if the same fibroblast performs all of the processes that fall under the umbrella term of "activation".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!