Silencing of a subset of germline genes is dependent upon DNA methylation (DNAme) post-implantation. However, these genes are generally hypomethylated in the blastocyst, implicating alternative repressive pathways before implantation. Indeed, in embryonic stem cells (ESCs), an overlapping set of genes, including germline "genome-defence" (GGD) genes, are upregulated following deletion of the H3K9 methyltransferase SETDB1 or subunits of the non-canonical PRC1 complex PRC1.6. Here, we show that in pre-implantation embryos and naïve ESCs (nESCs), hypomethylated promoters of germline genes bound by the PRC1.6 DNA-binding subunits MGA/MAX/E2F6 are enriched for RING1B-dependent H2AK119ub1 and H3K9me3. Accordingly, repression of these genes in nESCs shows a greater dependence on PRC1.6 than DNAme. In contrast, GGD genes are hypermethylated in epiblast-like cells (EpiLCs) and their silencing is dependent upon SETDB1, PRC1.6/RING1B and DNAme, with H3K9me3 and DNAme establishment dependent upon MGA binding. Thus, GGD genes are initially repressed by PRC1.6, with DNAme subsequently engaged in post-implantation embryos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639735PMC
http://dx.doi.org/10.1038/s41467-021-27345-xDOI Listing

Publication Analysis

Top Keywords

germline genes
12
ggd genes
12
genes
9
prc16 dname
8
prc16
5
dname
5
repression germline
4
genes prc16
4
prc16 setdb1
4
setdb1 early
4

Similar Publications

Osteosarcoma (OS) is the most common malignant bone tumor affecting adolescents and young adults and it usually occurs in the long bones of the extremities. The detection of cancer-related genetic alterations has a growing effect in guiding diagnosis, prognosis and targeted therapies. However, little is known about the molecular aspects involved in the etiology and progression of OS, which limits options for targeted therapies.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Background: The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis.

Methods: In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

Purpose: Genomic ascertainment of electronic health record-linked exome data in two large biobanks was used to quantify germline pathogenic/likely pathogenic (P/LP) variant prevalence, cancer prevalence, and survival in adults with non- RAS/mitogen-activated protein kinase genes (RASopathies).

Patients And Methods: Germline RASopathy variants were examined from adult participants in UK Biobank (UKBB; n=469,802), Geisinger MyCode (n=167,050) and Mount Sinai Bio (n=30,470). Variants were classified as per American College of Medical Genetics/Association for Molecular Pathology criteria and reviewed by a RASopathy variant expert.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!