Abnormal expression of long interspersed element-1 (LINE-1) has been implicated in drug resistance, while our previous study showed that chemotherapy drug paclitaxel (PTX) increased LINE-1 level with unknown mechanism. Bioinformatics analysis suggested the regulation of mRNA by drug-induced stress granules (SGs). This study aimed to explore whether and how SGs are involved in drug-induced LINE-1 increase and thereby promotes drug resistance of triple negative breast cancer (TNBC) cells. We demonstrated that SGs increased LINE-1 expression by recruiting and stabilizing mRNA under drug stress, thereby adapting TNBC cells to chemotherapy drugs. Moreover, LINE-1 inhibitor efavirenz (EFV) could inhibit drug-induced SG to destabilize LINE-1. Our study provides the first evidence of the regulation of LINE-1 by SGs that could be an important survival mechanism for cancer cells exposed to chemotherapy drugs. The findings provide a useful clue for developing new chemotherapeutic strategies against TNBCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637660 | PMC |
http://dx.doi.org/10.7555/JBR.35.20210105 | DOI Listing |
Sci Prog
January 2025
Department of Obstetrics and Gynecology, Hebei Medical University Third Hospital, Shijiazhuang, China.
Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.
The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.
View Article and Find Full Text PDFClin Infect Dis
January 2025
Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
Herpes simplex virus (HSV) infection is one of the most prevalent viral infections worldwide. In general, host immunity is sufficient to clear viral shedding and recurrences, although it is insufficient to prevent subsequent virologic reactivations. In immunocompromised patients, prolonged and difficult-to-treat HSV infections may develop.
View Article and Find Full Text PDFFood Funct
January 2025
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
This study aimed to investigate the effects of heat-killed N1 (HK-N1) and lipoteichoic acid (LTA) derived from it on alleviating insulin resistance by modulating the gut microbiota and amino acid metabolism. High-fat diet (HFD)-fed mice were administered live bacteria or HK-N1, and the results demonstrated that HK-N1 significantly reduced epididymal adipocyte size and serum low density lipoprotein-cholesterol, and improved insulin resistance by increasing the YY peptide and glucagon-like peptide levels. HK-N1 also modulated the gut microbiome composition, enhancing microbiota uniformity and reducing the abundance of , and .
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
Background: Methicillin-resistant (MRSA) poses a significant challenge in clinical environments due to its resistance to standard antibiotics. Protein A (SpA), a crucial virulence factor of MRSA, undermines host immune responses, making it an attractive target for vaccine development. This study aimed to identify potential epitopes within SpA that could elicit robust immune responses, ultimately contributing to the combat against multidrug-resistant (MDR) MRSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!